object makeTheoryAxiomsExplicit extends LKVisitor[Seq[Formula]]
Given a list of formulas Π, this transforms a proof π of Σ :- Δ into a proof π' of Π, Σ :- Δ.
It replaces theory axioms on sequents S that are subsumed by Π with propositional proofs of Π, S.
- Alphabetic
- By Inheritance
- makeTheoryAxiomsExplicit
- LKVisitor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply(proof: LKProof)(implicit ctx: Context): LKProof
-
def
apply(formulas: Formula*)(proof: LKProof): LKProof
Eliminates some theory axioms from
proof
, namely those subsumed byformulas
.Eliminates some theory axioms from
proof
, namely those subsumed byformulas
.- formulas
A list of Formulas. Each must be of the form ∀x1 ... ∀xn F' with F' quantifier-free.
- proof
An LKProof.
- returns
An LKProof
proof'
with the following properties: Every theory axiom inproof
that is subsumed byformulas
is removed inproof'
and elements offormula
may occur in the antecedent of the end sequent ofproof'
.
-
final
def
apply(proof: LKProof, otherArg: Seq[Formula]): LKProof
Applies the proof transformation to an LKProof.
Applies the proof transformation to an LKProof.
- proof
The input proof.
- returns
The transformed proof.
- Definition Classes
- LKVisitor
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
contractAfter[A](visitingFunction: (LKProof, A) ⇒ (LKProof, SequentConnector)): (LKProof, A) ⇒ (LKProof, SequentConnector)
Transforms a visiting function by inserting contractions after it.
Transforms a visiting function by inserting contractions after it. Only formula occurrences that were not in the old proof -- i.e., that have been added by the visitor -- are contracted.
- visitingFunction
The visiting function after which contractions should be inserted. In most cases, just using
recurse
here should be fine.- returns
A new visiting function that behaves the same as the old one, but contracts all duplicate new formulas at the end.
- Definition Classes
- LKVisitor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
one2one(proof: LKProof, arg: Seq[Formula])(func: (Seq[(LKProof, SequentConnector)]) ⇒ LKProof): (LKProof, SequentConnector)
- Definition Classes
- LKVisitor
-
def
recurse(proof: LKProof, formulas: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- makeTheoryAxiomsExplicit → LKVisitor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
transportToSubProof(arg: Seq[Formula], proof: LKProof, subProofIdx: Int): Seq[Formula]
- Definition Classes
- LKVisitor
-
def
visitAndLeft(proof: AndLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitAndRight(proof: AndRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitBottomAxiom(otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitContractionLeft(proof: ContractionLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitContractionRight(proof: ContractionRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitCut(proof: CutRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitDefinitionLeft(proof: DefinitionLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitDefinitionRight(proof: DefinitionRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitEqualityLeft(proof: EqualityLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitEqualityRight(proof: EqualityRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitExistsLeft(proof: ExistsLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitExistsRight(proof: ExistsRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitExistsSkLeft(proof: ExistsSkLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitForallLeft(proof: ForallLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitForallRight(proof: ForallRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitForallSkRight(proof: ForallSkRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitImpLeft(proof: ImpLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitImpRight(proof: ImpRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitInduction(proof: InductionRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitLogicalAxiom(proof: LogicalAxiom, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitNegLeft(proof: NegLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitNegRight(proof: NegRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitOpenAssumption(proof: OpenAssumption, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitOrLeft(proof: OrLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitOrRight(proof: OrRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitProofLink(proof: ProofLink, formulas: Seq[Formula]): (LKProof, SequentConnector)
- proof
A theory axiom with sequent A1,...,Ak :- B1,...,:Bn.
- returns
If A1,...,Ak :- B1,...,:Bn is subsumed by some F in formulas, returns a proof of F, A1,...,Ak :- B1,...,:Bn. Otherwise the input axiom.
- Attributes
- protected
- Definition Classes
- makeTheoryAxiomsExplicit → LKVisitor
-
def
visitReflexivityAxiom(proof: ReflexivityAxiom, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitTopAxiom(otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitWeakeningLeft(proof: WeakeningLeftRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
def
visitWeakeningRight(proof: WeakeningRightRule, otherArg: Seq[Formula]): (LKProof, SequentConnector)
- Attributes
- protected
- Definition Classes
- LKVisitor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
withIdentitySequentConnector(proof: LKProof): (LKProof, SequentConnector)
- Definition Classes
- LKVisitor
-
def
withSequentConnector(formulas: Formula*)(proof: LKProof): (LKProof, SequentConnector)
Eliminates some theory axioms from
proof
, namely those subsumed byformulas
.Eliminates some theory axioms from
proof
, namely those subsumed byformulas
.- formulas
A list of Formulas. Each must be of the form ∀x1 ... ∀xn F' with F' quantifier-free.
- proof
An LKProof.
- returns
A pair
(proof', conn)
with the following properties: Every theory axiom inproof
that is subsumed byformulas
is removed inproof'
and elements offormulas
may occur in the antecedent of the end sequent ofproof'
;conn
is an SequentConnector relatingproof
andproof'
.
-
final
def
withSequentConnector(proof: LKProof, otherArg: Seq[Formula]): (LKProof, SequentConnector)
Applies the proof transformation to an LKProof.
Applies the proof transformation to an LKProof.
- proof
The input proof.
- returns
Transformed proof, and the sequent connector with the new proof as lower sequent and the old proof as upper sequent.
- Definition Classes
- LKVisitor
This is the API documentation for GAPT.
The main package is at.logic.gapt.