object ParamodulationRightRule extends ConvenienceConstructor
- Source
- macroRules.scala
- Alphabetic
- By Inheritance
- ParamodulationRightRule
- ConvenienceConstructor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
LKRuleCreationException(text: String): LKRuleCreationException
Create an LKRuleCreationException with a message starting with "Cannot create longName: ..."
Create an LKRuleCreationException with a message starting with "Cannot create longName: ..."
- text
The rest of the message.
- Attributes
- protected
- Definition Classes
- ConvenienceConstructor
-
def
apply(leftSubProof: LKProof, eq: IndexOrFormula, rightSubProof: LKProof, aux: IndexOrFormula, mainFormula: Formula): LKProof
Simulates a binary equation rule, aka paramodulation.
Simulates a binary equation rule, aka paramodulation.
A binary rule of the form
(π1) (π2) Γ,Δ :- s = t Π :- Λ, A[s] ------------------------------par:r Γ, Π :- Δ, Λ, A[t]
is expressed as a series of inferences:(π2) Π :- Λ, A[s] --------------------w:l s = t, Π :- Λ, A[s] (π1) ---------------------:eq:r Γ, Δ :- s = t s = t, Π :- Λ, A[t] -------------------------------------cut Γ, Π :- Δ, Λ, A[t]
Each of the aux formulas can be given as an index or a formula. If it is given as a formula, the constructor will attempt to find an appropriate index on its own.
- leftSubProof
The left subproof π1.
- eq
The index of the equation or the equation itself.
- rightSubProof
The right subproof π2.
- aux
The index of the aux formula or the aux formula itself.
- mainFormula
The proposed main formula.
-
def
apply(leftSubProof: LKProof, eq: IndexOrFormula, rightSubProof: LKProof, aux: IndexOrFormula, con: Abs): LKProof
Simulates a binary equation rule, aka paramodulation.
Simulates a binary equation rule, aka paramodulation.
A binary rule of the form
(π1) (π2) Γ,Δ :- s = t Π :- Λ, A[s] ------------------------------par:r Γ, Π :- Δ, Λ, A[t]
is expressed as a series of inferences:(π2) Π :- Λ, A[s] --------------------w:l s = t, Π :- Λ, A[s] (π1) ---------------------:eq:r Γ, Δ :- s = t s = t, Π :- Λ, A[t] -------------------------------------cut Γ, Π :- Δ, Λ, A[t]
Each of the aux formulas can be given as an index or a formula. If it is given as a formula, the constructor will attempt to find an appropriate index on its own.
- leftSubProof
The left subproof π1.
- eq
The index of the equation or the equation itself.
- rightSubProof
The right subproof π2.
- aux
The index of the aux formula or the aux formula itself.
- con
The positions of the term to be replaced within A.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
findAndValidate(premise: HOLSequent)(antIndicesFormulas: Seq[IndexOrFormula], sucIndicesFormulas: Seq[IndexOrFormula]): (Seq[Int], Seq[Int])
Combines findIndicesOrFormulasInPremise and validateIndices.
Combines findIndicesOrFormulasInPremise and validateIndices. That is, it will return a pair of lists of indices and throw an exception if either list contains a -1.
- premise
The sequent in question.
- antIndicesFormulas
The list of indices or formulas in the antecedent.
- sucIndicesFormulas
The list of indices or formulas in the succedent.
- Attributes
- protected
- Definition Classes
- ConvenienceConstructor
-
def
findIndicesOrFormulasInPremise(premise: HOLSequent)(antIndicesFormulas: Seq[IndexOrFormula], sucIndicesFormulas: Seq[IndexOrFormula]): (Seq[Formula], Seq[Int], Seq[Formula], Seq[Int])
- Definition Classes
- ConvenienceConstructor
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
longName: String
- Definition Classes
- ConvenienceConstructor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
validateIndices(premise: HOLSequent)(antFormulas: Seq[Formula], antIndices: Seq[Int], sucFormulas: Seq[Formula], sucIndices: Seq[Int]): Unit
Throws an exception if the output of findFormulasInPremise contains any -1 entries.
Throws an exception if the output of findFormulasInPremise contains any -1 entries.
- premise
The sequent in question.
- antFormulas
The list of formulas in the antecedent.
- antIndices
The list of indices corresponding to antFormulas.
- sucFormulas
The list of formulas in the succedent.
- sucIndices
The list indices corresponding to sucFormulas.
- Attributes
- protected
- Definition Classes
- ConvenienceConstructor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
This is the API documentation for GAPT.
The main package is at.logic.gapt.