YES
The TRS could be proven terminating. The proof took 2404 ms.
Problem 1 was processed with processor DependencyGraph (519ms). | Problem 2 was processed with processor PolynomialLinearRange4iUR (1739ms). | | Problem 4 was processed with processor DependencyGraph (4ms). | Problem 3 was processed with processor SubtermCriterion (7ms).
+#(p2, +(p2, p2)) | → | +#(p1, p5) | +#(p2, p1) | → | +#(p1, p2) | |
+#(p10, +(p1, x)) | → | +#(p10, x) | +#(+(x, y), z) | → | +#(y, z) | |
+#(p1, +(p2, +(p2, x))) | → | +#(p5, x) | +#(+(x, y), z) | → | +#(x, +(y, z)) | |
+#(p1, +(p1, x)) | → | +#(p2, x) | +#(p10, +(p2, x)) | → | +#(p10, x) | |
+#(p5, +(p5, x)) | → | +#(p10, x) | +#(p5, p2) | → | +#(p2, p5) | |
+#(p5, +(p2, x)) | → | +#(p2, +(p5, x)) | +#(p5, p1) | → | +#(p1, p5) | |
+#(p5, +(p1, x)) | → | +#(p5, x) | +#(p10, +(p5, x)) | → | +#(p5, +(p10, x)) | |
+#(p10, +(p1, x)) | → | +#(p1, +(p10, x)) | +#(p10, +(p5, x)) | → | +#(p10, x) | |
+#(p10, p1) | → | +#(p1, p10) | +#(p5, +(p2, x)) | → | +#(p5, x) | |
+#(p10, +(p2, x)) | → | +#(p2, +(p10, x)) | +#(p2, +(p1, x)) | → | +#(p1, +(p2, x)) | |
+#(p5, +(p1, x)) | → | +#(p1, +(p5, x)) | +#(p2, +(p2, +(p2, x))) | → | +#(p5, x) | |
+#(p2, +(p1, x)) | → | +#(p2, x) | +#(p10, p2) | → | +#(p2, p10) | |
+#(p10, p5) | → | +#(p5, p10) | +#(p2, +(p2, +(p2, x))) | → | +#(p1, +(p5, x)) |
+(p1, p1) | → | p2 | +(p1, +(p2, p2)) | → | p5 | |
+(p5, p5) | → | p10 | +(+(x, y), z) | → | +(x, +(y, z)) | |
+(p1, +(p1, x)) | → | +(p2, x) | +(p1, +(p2, +(p2, x))) | → | +(p5, x) | |
+(p2, p1) | → | +(p1, p2) | +(p2, +(p1, x)) | → | +(p1, +(p2, x)) | |
+(p2, +(p2, p2)) | → | +(p1, p5) | +(p2, +(p2, +(p2, x))) | → | +(p1, +(p5, x)) | |
+(p5, p1) | → | +(p1, p5) | +(p5, +(p1, x)) | → | +(p1, +(p5, x)) | |
+(p5, p2) | → | +(p2, p5) | +(p5, +(p2, x)) | → | +(p2, +(p5, x)) | |
+(p5, +(p5, x)) | → | +(p10, x) | +(p10, p1) | → | +(p1, p10) | |
+(p10, +(p1, x)) | → | +(p1, +(p10, x)) | +(p10, p2) | → | +(p2, p10) | |
+(p10, +(p2, x)) | → | +(p2, +(p10, x)) | +(p10, p5) | → | +(p5, p10) | |
+(p10, +(p5, x)) | → | +(p5, +(p10, x)) |
Termination of terms over the following signature is verified: p5, p2, p1, +, p10
+#(p10, +(p5, x)) → +#(p5, +(p10, x)) | +#(p10, +(p1, x)) → +#(p1, +(p10, x)) |
+#(p10, +(p5, x)) → +#(p10, x) | +#(p10, +(p1, x)) → +#(p10, x) |
+#(p1, +(p2, +(p2, x))) → +#(p5, x) | +#(p5, +(p2, x)) → +#(p5, x) |
+#(p1, +(p1, x)) → +#(p2, x) | +#(p10, +(p2, x)) → +#(p10, x) |
+#(p10, +(p2, x)) → +#(p2, +(p10, x)) | +#(p5, +(p5, x)) → +#(p10, x) |
+#(p2, +(p1, x)) → +#(p1, +(p2, x)) | +#(p5, +(p1, x)) → +#(p1, +(p5, x)) |
+#(p5, +(p2, x)) → +#(p2, +(p5, x)) | +#(p2, +(p1, x)) → +#(p2, x) |
+#(p2, +(p2, +(p2, x))) → +#(p5, x) | +#(p2, +(p2, +(p2, x))) → +#(p1, +(p5, x)) |
+#(p5, +(p1, x)) → +#(p5, x) |
+#(+(x, y), z) → +#(y, z) | +#(+(x, y), z) → +#(x, +(y, z)) |
+#(p10, +(p5, x)) | → | +#(p5, +(p10, x)) | +#(p10, +(p1, x)) | → | +#(p1, +(p10, x)) | |
+#(p10, +(p5, x)) | → | +#(p10, x) | +#(p10, +(p1, x)) | → | +#(p10, x) | |
+#(p1, +(p2, +(p2, x))) | → | +#(p5, x) | +#(p5, +(p2, x)) | → | +#(p5, x) | |
+#(p1, +(p1, x)) | → | +#(p2, x) | +#(p10, +(p2, x)) | → | +#(p10, x) | |
+#(p10, +(p2, x)) | → | +#(p2, +(p10, x)) | +#(p5, +(p5, x)) | → | +#(p10, x) | |
+#(p2, +(p1, x)) | → | +#(p1, +(p2, x)) | +#(p5, +(p2, x)) | → | +#(p2, +(p5, x)) | |
+#(p5, +(p1, x)) | → | +#(p1, +(p5, x)) | +#(p2, +(p1, x)) | → | +#(p2, x) | |
+#(p2, +(p2, +(p2, x))) | → | +#(p5, x) | +#(p2, +(p2, +(p2, x))) | → | +#(p1, +(p5, x)) | |
+#(p5, +(p1, x)) | → | +#(p5, x) |
+(p1, p1) | → | p2 | +(p1, +(p2, p2)) | → | p5 | |
+(p5, p5) | → | p10 | +(+(x, y), z) | → | +(x, +(y, z)) | |
+(p1, +(p1, x)) | → | +(p2, x) | +(p1, +(p2, +(p2, x))) | → | +(p5, x) | |
+(p2, p1) | → | +(p1, p2) | +(p2, +(p1, x)) | → | +(p1, +(p2, x)) | |
+(p2, +(p2, p2)) | → | +(p1, p5) | +(p2, +(p2, +(p2, x))) | → | +(p1, +(p5, x)) | |
+(p5, p1) | → | +(p1, p5) | +(p5, +(p1, x)) | → | +(p1, +(p5, x)) | |
+(p5, p2) | → | +(p2, p5) | +(p5, +(p2, x)) | → | +(p2, +(p5, x)) | |
+(p5, +(p5, x)) | → | +(p10, x) | +(p10, p1) | → | +(p1, p10) | |
+(p10, +(p1, x)) | → | +(p1, +(p10, x)) | +(p10, p2) | → | +(p2, p10) | |
+(p10, +(p2, x)) | → | +(p2, +(p10, x)) | +(p10, p5) | → | +(p5, p10) | |
+(p10, +(p5, x)) | → | +(p5, +(p10, x)) |
Termination of terms over the following signature is verified: p5, p2, p1, +, p10
+(+(x, y), z) | → | +(x, +(y, z)) | +(p10, p5) | → | +(p5, p10) | |
+(p10, +(p2, x)) | → | +(p2, +(p10, x)) | +(p2, +(p2, +(p2, x))) | → | +(p1, +(p5, x)) | |
+(p2, +(p2, p2)) | → | +(p1, p5) | +(p1, +(p2, p2)) | → | p5 | |
+(p10, p2) | → | +(p2, p10) | +(p5, +(p2, x)) | → | +(p2, +(p5, x)) | |
+(p2, p1) | → | +(p1, p2) | +(p1, +(p2, +(p2, x))) | → | +(p5, x) | |
+(p5, +(p5, x)) | → | +(p10, x) | +(p10, +(p5, x)) | → | +(p5, +(p10, x)) | |
+(p2, +(p1, x)) | → | +(p1, +(p2, x)) | +(p1, +(p1, x)) | → | +(p2, x) | |
+(p10, +(p1, x)) | → | +(p1, +(p10, x)) | +(p5, +(p1, x)) | → | +(p1, +(p5, x)) | |
+(p5, p2) | → | +(p2, p5) | +(p5, p5) | → | p10 | |
+(p5, p1) | → | +(p1, p5) | +(p10, p1) | → | +(p1, p10) | |
+(p1, p1) | → | p2 |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
+#(p10, +(p5, x)) | → | +#(p10, x) | +#(p10, +(p1, x)) | → | +#(p10, x) | |
+#(p1, +(p2, +(p2, x))) | → | +#(p5, x) | +#(p5, +(p2, x)) | → | +#(p5, x) | |
+#(p1, +(p1, x)) | → | +#(p2, x) | +#(p10, +(p2, x)) | → | +#(p10, x) | |
+#(p5, +(p5, x)) | → | +#(p10, x) | +#(p2, +(p2, +(p2, x))) | → | +#(p5, x) | |
+#(p2, +(p1, x)) | → | +#(p2, x) | +#(p2, +(p2, +(p2, x))) | → | +#(p1, +(p5, x)) | |
+#(p5, +(p1, x)) | → | +#(p5, x) |
+#(p10, +(p2, x)) | → | +#(p2, +(p10, x)) | +#(p2, +(p1, x)) | → | +#(p1, +(p2, x)) | |
+#(p10, +(p5, x)) | → | +#(p5, +(p10, x)) | +#(p10, +(p1, x)) | → | +#(p1, +(p10, x)) | |
+#(p5, +(p1, x)) | → | +#(p1, +(p5, x)) | +#(p5, +(p2, x)) | → | +#(p2, +(p5, x)) |
+(p1, p1) | → | p2 | +(p1, +(p2, p2)) | → | p5 | |
+(p5, p5) | → | p10 | +(+(x, y), z) | → | +(x, +(y, z)) | |
+(p1, +(p1, x)) | → | +(p2, x) | +(p1, +(p2, +(p2, x))) | → | +(p5, x) | |
+(p2, p1) | → | +(p1, p2) | +(p2, +(p1, x)) | → | +(p1, +(p2, x)) | |
+(p2, +(p2, p2)) | → | +(p1, p5) | +(p2, +(p2, +(p2, x))) | → | +(p1, +(p5, x)) | |
+(p5, p1) | → | +(p1, p5) | +(p5, +(p1, x)) | → | +(p1, +(p5, x)) | |
+(p5, p2) | → | +(p2, p5) | +(p5, +(p2, x)) | → | +(p2, +(p5, x)) | |
+(p5, +(p5, x)) | → | +(p10, x) | +(p10, p1) | → | +(p1, p10) | |
+(p10, +(p1, x)) | → | +(p1, +(p10, x)) | +(p10, p2) | → | +(p2, p10) | |
+(p10, +(p2, x)) | → | +(p2, +(p10, x)) | +(p10, p5) | → | +(p5, p10) | |
+(p10, +(p5, x)) | → | +(p5, +(p10, x)) |
Termination of terms over the following signature is verified: p5, p2, p1, p10, +
+#(+(x, y), z) | → | +#(y, z) | +#(+(x, y), z) | → | +#(x, +(y, z)) |
+(p1, p1) | → | p2 | +(p1, +(p2, p2)) | → | p5 | |
+(p5, p5) | → | p10 | +(+(x, y), z) | → | +(x, +(y, z)) | |
+(p1, +(p1, x)) | → | +(p2, x) | +(p1, +(p2, +(p2, x))) | → | +(p5, x) | |
+(p2, p1) | → | +(p1, p2) | +(p2, +(p1, x)) | → | +(p1, +(p2, x)) | |
+(p2, +(p2, p2)) | → | +(p1, p5) | +(p2, +(p2, +(p2, x))) | → | +(p1, +(p5, x)) | |
+(p5, p1) | → | +(p1, p5) | +(p5, +(p1, x)) | → | +(p1, +(p5, x)) | |
+(p5, p2) | → | +(p2, p5) | +(p5, +(p2, x)) | → | +(p2, +(p5, x)) | |
+(p5, +(p5, x)) | → | +(p10, x) | +(p10, p1) | → | +(p1, p10) | |
+(p10, +(p1, x)) | → | +(p1, +(p10, x)) | +(p10, p2) | → | +(p2, p10) | |
+(p10, +(p2, x)) | → | +(p2, +(p10, x)) | +(p10, p5) | → | +(p5, p10) | |
+(p10, +(p5, x)) | → | +(p5, +(p10, x)) |
Termination of terms over the following signature is verified: p5, p2, p1, +, p10
The following projection was used:
Thus, the following dependency pairs are removed:
+#(+(x, y), z) | → | +#(y, z) | +#(+(x, y), z) | → | +#(x, +(y, z)) |