TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60047 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (151ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (170ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (391ms), DependencyGraph (3ms), ReductionPairSAT (1828ms)].
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (488ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (3321ms), DependencyGraph (3ms), ReductionPairSAT (timeout)].
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

ifPlus#(false, x, y, z)plusIter#(x, s(y), s(z))plusIter#(x, y, z)ifPlus#(le(x, z), x, y, z)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, le, inc, s, false, div2




Open Dependency Pair Problem 3

Dependency Pairs

if1#(false, b, x, y, i, j)if2#(b, x, y, i, j)div2#(x, y, i)if1#(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if2#(true, x, y, i, j)div2#(minus(x, y), y, j)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, le, inc, s, false, div2


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if1#(false, b, x, y, i, j)if2#(b, x, y, i, j)ifPlus#(false, x, y, z)plusIter#(x, s(y), s(z))
div2#(x, y, i)inc#(i)plusIter#(x, y, z)ifPlus#(le(x, z), x, y, z)
inc#(s(i))inc#(i)if2#(true, x, y, i, j)minus#(x, y)
div2#(x, y, i)le#(y, x)div#(x, y)div2#(x, y, 0)
div2#(x, y, i)plus#(i, 0)le#(s(x), s(y))le#(x, y)
div2#(x, y, i)if1#(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))plusIter#(x, y, z)le#(x, z)
minus#(s(x), s(y))minus#(x, y)if2#(true, x, y, i, j)div2#(minus(x, y), y, j)
div2#(x, y, i)le#(y, 0)plus#(x, y)plusIter#(x, y, 0)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, s, inc, le, false, div2

Strategy


The following SCCs where found

if1#(false, b, x, y, i, j) → if2#(b, x, y, i, j)div2#(x, y, i) → if1#(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if2#(true, x, y, i, j) → div2#(minus(x, y), y, j)

le#(s(x), s(y)) → le#(x, y)

inc#(s(i)) → inc#(i)

minus#(s(x), s(y)) → minus#(x, y)

ifPlus#(false, x, y, z) → plusIter#(x, s(y), s(z))plusIter#(x, y, z) → ifPlus#(le(x, z), x, y, z)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, s, inc, le, false, div2

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

inc#(s(i))inc#(i)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, s, inc, le, false, div2

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

inc#(s(i))inc#(i)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

div(x, y)div2(x, y, 0)div2(x, y, i)if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j)divZeroErrorif1(false, b, x, y, i, j)if2(b, x, y, i, j)
if2(true, x, y, i, j)div2(minus(x, y), y, j)if2(false, x, y, i, j)i
inc(0)0inc(s(i))s(inc(i))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)minus(x, 0)x
minus(0, y)0minus(s(x), s(y))minus(x, y)
plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
acad

Original Signature

Termination of terms over the following signature is verified: plus, d, minus, c, plusIter, divZeroError, a, div, true, if1, if2, ifPlus, 0, s, inc, le, false, div2

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)