TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (71ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (433ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (1106ms), DependencyGraph (2ms), ReductionPairSAT (1689ms), DependencyGraph (1ms), SizeChangePrinciple (timeout)].
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (93ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (413ms), DependencyGraph (3ms), ReductionPairSAT (1432ms), DependencyGraph (1ms)].

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

sumIter#(xs, x)ifSum#(isempty(xs), xs, x, plus(x, head(xs)))ifSum#(false, xs, x, y)sumIter#(tail(xs), y)

Rewrite Rules

plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)sum(xs)sumIter(xs, 0)
sumIter(xs, x)ifSum(isempty(xs), xs, x, plus(x, head(xs)))ifSum(true, xs, x, y)x
ifSum(false, xs, x, y)sumIter(tail(xs), y)isempty(nil)true
isempty(cons(x, xs))falsehead(nil)error
head(cons(x, xs))xtail(nil)nil
tail(cons(x, xs))xsab
ac

Original Signature

Termination of terms over the following signature is verified: plus, b, error, c, plusIter, a, true, sum, sumIter, tail, ifPlus, 0, le, s, isempty, ifSum, false, head, cons, nil




Open Dependency Pair Problem 4

Dependency Pairs

ifPlus#(false, x, y, z)plusIter#(x, s(y), s(z))plusIter#(x, y, z)ifPlus#(le(x, z), x, y, z)

Rewrite Rules

plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)sum(xs)sumIter(xs, 0)
sumIter(xs, x)ifSum(isempty(xs), xs, x, plus(x, head(xs)))ifSum(true, xs, x, y)x
ifSum(false, xs, x, y)sumIter(tail(xs), y)isempty(nil)true
isempty(cons(x, xs))falsehead(nil)error
head(cons(x, xs))xtail(nil)nil
tail(cons(x, xs))xsab
ac

Original Signature

Termination of terms over the following signature is verified: plus, b, error, c, plusIter, a, true, sum, sumIter, tail, ifPlus, 0, le, s, isempty, ifSum, false, head, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

ifPlus#(false, x, y, z)plusIter#(x, s(y), s(z))sum#(xs)sumIter#(xs, 0)
sumIter#(xs, x)ifSum#(isempty(xs), xs, x, plus(x, head(xs)))le#(s(x), s(y))le#(x, y)
sumIter#(xs, x)isempty#(xs)plusIter#(x, y, z)ifPlus#(le(x, z), x, y, z)
sumIter#(xs, x)plus#(x, head(xs))plusIter#(x, y, z)le#(x, z)
sumIter#(xs, x)head#(xs)ifSum#(false, xs, x, y)sumIter#(tail(xs), y)
ifSum#(false, xs, x, y)tail#(xs)plus#(x, y)plusIter#(x, y, 0)

Rewrite Rules

plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)sum(xs)sumIter(xs, 0)
sumIter(xs, x)ifSum(isempty(xs), xs, x, plus(x, head(xs)))ifSum(true, xs, x, y)x
ifSum(false, xs, x, y)sumIter(tail(xs), y)isempty(nil)true
isempty(cons(x, xs))falsehead(nil)error
head(cons(x, xs))xtail(nil)nil
tail(cons(x, xs))xsab
ac

Original Signature

Termination of terms over the following signature is verified: plus, b, error, c, plusIter, a, true, sum, sumIter, tail, ifPlus, 0, s, le, isempty, ifSum, false, head, nil, cons

Strategy


The following SCCs where found

le#(s(x), s(y)) → le#(x, y)

ifPlus#(false, x, y, z) → plusIter#(x, s(y), s(z))plusIter#(x, y, z) → ifPlus#(le(x, z), x, y, z)

sumIter#(xs, x) → ifSum#(isempty(xs), xs, x, plus(x, head(xs)))ifSum#(false, xs, x, y) → sumIter#(tail(xs), y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

plus(x, y)plusIter(x, y, 0)plusIter(x, y, z)ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z)yifPlus(false, x, y, z)plusIter(x, s(y), s(z))
le(s(x), 0)falsele(0, y)true
le(s(x), s(y))le(x, y)sum(xs)sumIter(xs, 0)
sumIter(xs, x)ifSum(isempty(xs), xs, x, plus(x, head(xs)))ifSum(true, xs, x, y)x
ifSum(false, xs, x, y)sumIter(tail(xs), y)isempty(nil)true
isempty(cons(x, xs))falsehead(nil)error
head(cons(x, xs))xtail(nil)nil
tail(cons(x, xs))xsab
ac

Original Signature

Termination of terms over the following signature is verified: plus, b, error, c, plusIter, a, true, sum, sumIter, tail, ifPlus, 0, s, le, isempty, ifSum, false, head, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)