TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60011 ms.

The following DP Processors were used


Problem 1 was processed with processor ForwardNarrowing (11ms).
 | – Problem 2 was processed with processor ForwardNarrowing (3ms).
 |    | – Problem 3 was processed with processor ForwardNarrowing (3ms).
 |    |    | – Problem 4 was processed with processor ForwardNarrowing (4ms).
 |    |    |    | – Problem 5 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    | – Problem 6 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    | – Problem 7 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    | – Problem 8 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    | – Problem 9 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    | – Problem 10 was processed with processor ForwardNarrowing (45ms).
 |    |    |    |    |    |    |    |    |    | – Problem 11 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    | – Problem 12 was processed with processor ForwardNarrowing (5ms).
 |    |    |    |    |    |    |    |    |    |    |    | – Problem 13 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor ForwardNarrowing (1ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor ForwardNarrowing (2ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 17 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 18 was processed with processor ForwardNarrowing (9ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 19 was processed with processor ForwardInstantiation (36ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 20 was processed with processor Propagation (60ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 21 was processed with processor ForwardNarrowing (4ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 22 was processed with processor ForwardNarrowing (3ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 23 was processed with processor ForwardNarrowing (37ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 24 was processed with processor ForwardNarrowing (12ms).
 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | – Problem 25 remains open; application of the following processors failed [ForwardNarrowing (40ms), BackwardInstantiation (24ms), ForwardInstantiation (19ms), Propagation (26ms), ForwardNarrowing (6ms), BackwardInstantiation (17ms), ForwardInstantiation (16ms), Propagation (27ms)].

The following open problems remain:



Open Dependency Pair Problem 1

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
*#(+(y, z), x)*#(x, y)+#(.(x, y), z).#(x, +(y, z))
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x).#(x, min).#(+(min, x), 3)
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
*#(3, x)*#(min, x).#(x, .(y, z))+#(x, y)
+#(.(x, y), z)+#(y, z)*#(3, x).#(x, *(min, x))
+#(3, x).#(1, +(min, x))*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .


Problem 1: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
*#(+(y, z), x)*#(x, y)+#(.(x, y), z).#(x, +(y, z))
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x).#(x, min).#(+(min, x), 3)
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
*#(3, x)*#(min, x)+#(.(x, y), z)+#(y, z)
.#(x, .(y, z))+#(x, y)+#(3, x).#(1, +(min, x))
*#(3, x).#(x, *(min, x))*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, y), z) → .#(x, +(y, z)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(x, .(_x33, +(_x32, _x31))) 
.#(x, .(1, +(min, _x31))) 
.#(x, 0) 
.#(x, *(2, _x31)) 
.#(x, _x31) 
.#(x, *(3, _x31)) 
.#(x, 1) 
.#(x, 3) 
Thus, the rule +#(.(x, y), z) → .#(x, +(y, z)) is replaced by the following rules:
+#(.(x, .(_x33, _x32)), _x31) → .#(x, .(_x33, +(_x32, _x31)))+#(.(x, 3), _x31) → .#(x, .(1, +(min, _x31)))
+#(.(x, _x31), _x31) → .#(x, *(2, _x31))+#(.(x, *(min, _x31)), _x31) → .#(x, 0)
+#(.(x, 1), 2) → .#(x, 3)+#(.(x, *(2, _x31)), *(min, _x31)) → .#(x, _x31)
+#(.(x, *(2, _x31)), _x31) → .#(x, *(3, _x31))+#(.(x, 0), _x31) → .#(x, _x31)
+#(.(x, 1), min) → .#(x, 0)+#(.(x, 2), min) → .#(x, 1)

Problem 2: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, *(2, _x31)), _x31).#(x, *(3, _x31))+#(.(x, 0), _x31).#(x, _x31)
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
*#(3, x)*#(min, x)+#(.(x, y), z)+#(y, z)
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(3, x).#(x, *(min, x))
*#(.(x, y), z)*#(y, z)+#(.(x, 1), min).#(x, 0)
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
+#(.(x, *(min, _x31)), _x31).#(x, 0)+#(.(x, 1), 2).#(x, 3)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2).#(x, min).#(+(min, x), 3)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, _x31), _x31).#(x, *(2, _x31))
.#(x, .(y, z))+#(x, y)+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)*#(2, 2).#(1, 0)
+#(.(x, 2), min).#(x, 1)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, *(2, _x31)), _x31) → .#(x, *(3, _x31)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(x, .(_x41, *(min, _x41))) 
Thus, the rule +#(.(x, *(2, _x31)), _x31) → .#(x, *(3, _x31)) is replaced by the following rules:
+#(.(x, *(2, _x41)), _x41) → .#(x, .(_x41, *(min, _x41)))

Problem 3: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(3, x)+#(min, x)
*#(3, x)*#(min, x).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z)*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(.(x, y), z)*#(y, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))+#(.(x, 1), min).#(x, 0)
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
+#(.(x, *(min, _x31)), _x31).#(x, 0)+#(.(x, 1), 2).#(x, 3)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2).#(x, min).#(+(min, x), 3)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, _x31), _x31).#(x, *(2, _x31))
.#(x, .(y, z))+#(x, y)+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)+#(.(x, 2), min).#(x, 1)
*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(3, x) → *#(min, x) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(3, x) → *#(min, x) is deleted.

Problem 4: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(3, x).#(x, *(min, x))
*#(.(x, y), z)*#(y, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
+#(.(x, 1), min).#(x, 0)*#(.(x, y), z).#(*(x, z), *(y, z))
+#(x, x)*#(2, x)+#(.(x, *(min, _x31)), _x31).#(x, 0)
+#(.(x, 1), 2).#(x, 3)*#(.(x, y), z)*#(x, z)
.#(x, min)+#(min, x)*#(2, min).#(min, 2)
.#(x, min).#(+(min, x), 3)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
+#(.(x, _x31), _x31).#(x, *(2, _x31)).#(x, .(y, z))+#(x, y)
+#(3, x).#(1, +(min, x))*#(+(y, z), x)*#(x, z)
*#(2, 2).#(1, 0)+#(.(x, 2), min).#(x, 1)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, 1), min) → .#(x, 0) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(.(x, 1), min) → .#(x, 0) is deleted.

Problem 5: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
*#(3, x).#(x, *(min, x))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(.(x, y), z)*#(y, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
+#(.(x, *(min, _x31)), _x31).#(x, 0)+#(.(x, 1), 2).#(x, 3)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2).#(x, min).#(+(min, x), 3)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, _x31), _x31).#(x, *(2, _x31))
.#(x, .(y, z))+#(x, y)+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)+#(.(x, 2), min).#(x, 1)
*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, *(min, _x31)), _x31) → .#(x, 0) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(.(x, *(min, _x31)), _x31) → .#(x, 0) is deleted.

Problem 6: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(3, x).#(x, *(min, x))
*#(.(x, y), z)*#(y, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
+#(.(x, 1), 2).#(x, 3)*#(.(x, y), z)*#(x, z)
.#(x, min)+#(min, x)*#(2, min).#(min, 2)
.#(x, min).#(+(min, x), 3)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
+#(.(x, _x31), _x31).#(x, *(2, _x31)).#(x, .(y, z))+#(x, y)
+#(3, x).#(1, +(min, x))*#(+(y, z), x)*#(x, z)
*#(2, 2).#(1, 0)+#(.(x, 2), min).#(x, 1)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, 1), 2) → .#(x, 3) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(.(x, 1), 2) → .#(x, 3) is deleted.

Problem 7: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
*#(3, x).#(x, *(min, x))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(.(x, y), z)*#(y, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
*#(2, min).#(min, 2).#(x, min).#(+(min, x), 3)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, _x31), _x31).#(x, *(2, _x31))
.#(x, .(y, z))+#(x, y)+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)*#(2, 2).#(1, 0)
+#(.(x, 2), min).#(x, 1)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(2, min) → .#(min, 2) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(2, min) → .#(min, 2) is deleted.

Problem 8: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(.(x, y), z).#(*(x, z), *(y, z))
+#(x, x)*#(2, x)*#(+(y, z), x)*#(x, y)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
.#(x, min).#(+(min, x), 3)+#(3, x)+#(min, x)
+#(.(x, _x31), _x31).#(x, *(2, _x31)).#(x, .(y, z)).#(+(x, y), z)
.#(x, .(y, z))+#(x, y)+#(.(x, y), z)+#(y, z)
+#(3, x).#(1, +(min, x))*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
+#(.(x, 2), min).#(x, 1)*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule .#(x, min) → .#(+(min, x), 3) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(*(2, min), 3) 
Thus, the rule .#(x, min) → .#(+(min, x), 3) is replaced by the following rules:
.#(min, min) → .#(*(2, min), 3)

Problem 9: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(.(x, y), z).#(*(x, z), *(y, z))
+#(x, x)*#(2, x)*#(+(y, z), x)*#(x, y)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, 0), _x31).#(x, _x31)*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
+#(3, x)+#(min, x)+#(.(x, _x31), _x31).#(x, *(2, _x31))
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
.#(x, .(y, z))+#(x, y)+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(3, x).#(x, *(min, x))+#(3, x).#(1, +(min, x))
*#(.(x, y), z)*#(y, z)*#(+(y, z), x)*#(x, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))*#(2, 2).#(1, 0)
+#(.(x, 2), min).#(x, 1).#(min, min).#(*(2, min), 3)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, _x31), _x31) → .#(x, *(2, _x31)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(x, .(1, 0)) 
.#(x, .(min, 2)) 
Thus, the rule +#(.(x, _x31), _x31) → .#(x, *(2, _x31)) is replaced by the following rules:
+#(.(x, 2), 2) → .#(x, .(1, 0))+#(.(x, min), min) → .#(x, .(min, 2))

Problem 10: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, min), min).#(x, .(min, 2))+#(.(x, 0), _x31).#(x, _x31)
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z)+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(3, x).#(x, *(min, x))*#(.(x, y), z)*#(y, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41))).#(min, min).#(*(2, min), 3)
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31))).#(x, .(y, z))+#(x, y)
+#(.(x, 2), 2).#(x, .(1, 0))+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)+#(.(x, 2), min).#(x, 1)
*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule .#(min, min) → .#(*(2, min), 3) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(.(min, 2), 3) 
Thus, the rule .#(min, min) → .#(*(2, min), 3) is replaced by the following rules:
.#(min, min) → .#(.(min, 2), 3)

Problem 11: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(+(y, z), x)*#(x, y)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z)*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(.(x, y), z)*#(y, z)
.#(min, min).#(.(min, 2), 3)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(x, y), z).#(*(x, z), *(y, z))+#(x, x)*#(2, x)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31))).#(x, .(y, z))+#(x, y)
+#(.(x, 2), 2).#(x, .(1, 0))+#(3, x).#(1, +(min, x))
*#(+(y, z), x)*#(x, z)+#(.(x, 2), min).#(x, 1)
*#(2, 2).#(1, 0)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule .#(min, min) → .#(.(min, 2), 3) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule .#(min, min) → .#(.(min, 2), 3) is deleted.

Problem 12: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
+#(x, x)*#(2, x)*#(+(y, z), x)*#(x, y)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z).#(x, .(y, z))+#(x, y)
+#(.(x, y), z)+#(y, z)+#(.(x, 2), 2).#(x, .(1, 0))
+#(3, x).#(1, +(min, x))*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(2, 2).#(1, 0)+#(.(x, 2), min).#(x, 1)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(3, x) → .#(1, +(min, x)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(1, *(2, min)) 
Thus, the rule +#(3, x) → .#(1, +(min, x)) is replaced by the following rules:
+#(3, min) → .#(1, *(2, min))

Problem 13: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
+#(x, x)*#(2, x)*#(+(y, z), x)*#(x, y)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
.#(x, .(y, z))+#(x, y)+#(.(x, 2), 2).#(x, .(1, 0))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(3, x).#(x, *(min, x))
*#(.(x, y), z)*#(y, z)*#(+(y, z), x)*#(x, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))+#(.(x, 2), min).#(x, 1)
*#(2, 2).#(1, 0)+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(2, 2) → .#(1, 0) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(2, 2) → .#(1, 0) is deleted.

Problem 14: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
+#(x, x)*#(2, x)*#(+(y, z), x)*#(x, y)
*#(.(x, y), z)*#(x, z).#(x, min)+#(min, x)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z).#(x, .(y, z))+#(x, y)
+#(.(x, y), z)+#(y, z)+#(.(x, 2), 2).#(x, .(1, 0))
*#(3, x).#(x, *(min, x))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(.(x, y), z)*#(y, z)*#(+(y, z), x)*#(x, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))+#(.(x, 2), min).#(x, 1)
+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(x, x) → *#(2, x) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(x, x) → *#(2, x) is deleted.

Problem 15: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
*#(+(y, z), x)*#(x, y)*#(.(x, y), z)*#(x, z)
.#(x, min)+#(min, x)+#(.(x, 0), _x31).#(x, _x31)
+#(.(x, min), min).#(x, .(min, 2))*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
+#(3, x)+#(min, x).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z).#(x, .(y, z))+#(x, y)
+#(.(x, 2), 2).#(x, .(1, 0))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(3, x).#(x, *(min, x))*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
+#(.(x, 2), min).#(x, 1)+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule .#(x, min) → +#(min, x) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule .#(x, min) → +#(min, x) is deleted.

Problem 16: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
*#(+(y, z), x)*#(x, y)*#(.(x, y), z)*#(x, z)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(3, x)+#(min, x)
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
.#(x, .(y, z))+#(x, y)+#(.(x, 2), 2).#(x, .(1, 0))
*#(3, x).#(x, *(min, x))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(.(x, y), z)*#(y, z)*#(+(y, z), x)*#(x, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))+#(.(x, 2), min).#(x, 1)
+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(3, x) → +#(min, x) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(3, x) → +#(min, x) is deleted.

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
*#(+(y, z), x)*#(x, y)*#(.(x, y), z)*#(x, z)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31))).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z).#(x, .(y, z))+#(x, y)
+#(.(x, 2), 2).#(x, .(1, 0))+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)
*#(3, x).#(x, *(min, x))*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
+#(.(x, 2), min).#(x, 1)+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(.(x, 2), min) → .#(x, 1) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule +#(.(x, 2), min) → .#(x, 1) is deleted.

Problem 18: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
*#(+(y, z), x)*#(x, y)*#(.(x, y), z)*#(x, z)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(*(2, x), x)*#(3, x)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31))).#(x, .(y, z)).#(+(x, y), z)
+#(.(x, y), z)+#(y, z).#(x, .(y, z))+#(x, y)
+#(.(x, 2), 2).#(x, .(1, 0))*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(.(x, y), z)*#(y, z)
*#(+(y, z), x)*#(x, z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
+#(3, min).#(1, *(2, min))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule +#(3, min) → .#(1, *(2, min)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
.#(1, .(min, 2)) 
Thus, the rule +#(3, min) → .#(1, *(2, min)) is replaced by the following rules:
+#(3, min) → .#(1, .(min, 2))

Problem 19: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

*#(.(x, y), z).#(*(x, z), *(y, z))+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))
*#(+(y, z), x)*#(x, y)*#(.(x, y), z)*#(x, z)
+#(.(x, 0), _x31).#(x, _x31)+#(.(x, min), min).#(x, .(min, 2))
+#(3, min).#(1, .(min, 2))*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(*(2, x), x)*#(3, x)+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
.#(x, .(y, z)).#(+(x, y), z)+#(.(x, y), z)+#(y, z)
.#(x, .(y, z))+#(x, y)+#(.(x, 2), 2).#(x, .(1, 0))
+#(.(x, *(2, _x31)), *(min, _x31)).#(x, _x31)*#(3, x).#(x, *(min, x))
*#(.(x, y), z)*#(y, z)*#(+(y, z), x)*#(x, z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


Instantiation

For all potential successors l → r of the rule *#(+(y, z), x) → *#(x, y) on dependency pair chains it holds that: Thus, *#(+(y, z), x) → *#(x, y) is replaced by instances determined through the above matching. These instances are:
*#(+(y, z), .(_x, _y)) → *#(.(_x, _y), y)*#(+(y, z), +(_y, _z)) → *#(+(_y, _z), y)
*#(+(y, z), 3) → *#(3, y)

Instantiation

For all potential successors l → r of the rule *#(.(x, y), z) → *#(x, z) on dependency pair chains it holds that: Thus, *#(.(x, y), z) → *#(x, z) is replaced by instances determined through the above matching. These instances are:
*#(.(.(_x, _y), y), z) → *#(.(_x, _y), z)*#(.(+(_y, _z), y), z) → *#(+(_y, _z), z)
*#(.(3, y), z) → *#(3, z)

Instantiation

For all potential successors l → r of the rule +#(.(x, 0), _x31) → .#(x, _x31) on dependency pair chains it holds that: Thus, +#(.(x, 0), _x31) → .#(x, _x31) is replaced by instances determined through the above matching. These instances are:
+#(.(x, 0), .(_y, _z)) → .#(x, .(_y, _z))

Instantiation

For all potential successors l → r of the rule +#(.(x, y), z) → +#(y, z) on dependency pair chains it holds that: Thus, +#(.(x, y), z) → +#(y, z) is replaced by instances determined through the above matching. These instances are:
+#(.(x, 3), min) → +#(3, min)+#(.(x, .(_x, _y)), z) → +#(.(_x, _y), z)
+#(.(x, .(x, 3)), z) → +#(.(x, 3), z)+#(.(x, .(x, *(2, _x31))), *(min, _x31)) → +#(.(x, *(2, _x31)), *(min, _x31))
+#(.(x, .(x, 2)), 2) → +#(.(x, 2), 2)+#(.(x, .(x, min)), min) → +#(.(x, min), min)
+#(.(x, .(x, *(2, z))), z) → +#(.(x, *(2, z)), z)+#(.(x, .(x, 0)), z) → +#(.(x, 0), z)
+#(.(x, .(x, .(_x33, _x32))), z) → +#(.(x, .(_x33, _x32)), z)+#(.(z, *(2, z)), z) → +#(*(2, z), z)

Instantiation

For all potential successors l → r of the rule .#(x, .(y, z)) → +#(x, y) on dependency pair chains it holds that: Thus, .#(x, .(y, z)) → +#(x, y) is replaced by instances determined through the above matching. These instances are:
.#(.(_x, *(2, __x31)), .(*(min, __x31), z)) → +#(.(_x, *(2, __x31)), *(min, __x31)).#(.(_x, _y), .(y, z)) → +#(.(_x, _y), y)
.#(3, .(min, z)) → +#(3, min).#(.(_x, .(__x33, __x32)), .(y, z)) → +#(.(_x, .(__x33, __x32)), y)
.#(*(2, y), .(y, z)) → +#(*(2, y), y).#(.(_x, 0), .(y, z)) → +#(.(_x, 0), y)
.#(.(_x, *(2, y)), .(y, z)) → +#(.(_x, *(2, y)), y).#(.(_x, 3), .(y, z)) → +#(.(_x, 3), y)
.#(.(_x, min), .(min, z)) → +#(.(_x, min), min).#(.(_x, 2), .(2, z)) → +#(.(_x, 2), 2)

Instantiation

For all potential successors l → r of the rule +#(.(x, *(2, _x31)), *(min, _x31)) → .#(x, _x31) on dependency pair chains it holds that: Thus, +#(.(x, *(2, _x31)), *(min, _x31)) → .#(x, _x31) is replaced by instances determined through the above matching. These instances are:
+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))) → .#(x, .(_y, _z))

Instantiation

For all potential successors l → r of the rule *#(.(x, y), z) → *#(y, z) on dependency pair chains it holds that: Thus, *#(.(x, y), z) → *#(y, z) is replaced by instances determined through the above matching. These instances are:
*#(.(x, .(_x, _y)), z) → *#(.(_x, _y), z)*#(.(x, +(_y, _z)), z) → *#(+(_y, _z), z)
*#(.(z, 3), z) → *#(3, z)

Instantiation

For all potential successors l → r of the rule *#(+(y, z), x) → *#(x, z) on dependency pair chains it holds that: Thus, *#(+(y, z), x) → *#(x, z) is replaced by instances determined through the above matching. These instances are:
*#(+(y, z), 3) → *#(3, z)*#(+(y, z), +(_y, _z)) → *#(+(_y, _z), z)
*#(+(y, z), .(_x, _y)) → *#(.(_x, _y), z)

Problem 20: Propagation



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(.(z, 3), z)*#(3, z)
.#(.(_x, 0), .(y, z))+#(.(_x, 0), y)+#(.(x, .(x, 3)), z)+#(.(x, 3), z)
+#(.(x, 0), .(_y, _z)).#(x, .(_y, _z))*#(+(y, z), +(_y, _z))*#(+(_y, _z), z)
+#(.(x, .(x, 2)), 2)+#(.(x, 2), 2).#(.(_x, min), .(min, z))+#(.(_x, min), min)
+#(.(x, min), min).#(x, .(min, 2))*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(.(z, *(2, z)), z)+#(*(2, z), z)+#(*(2, x), x)*#(3, x)
.#(.(_x, _y), .(y, z))+#(.(_x, _y), y).#(x, .(y, z)).#(+(x, y), z)
*#(.(x, +(_y, _z)), z)*#(+(_y, _z), z).#(*(2, y), .(y, z))+#(*(2, y), y)
+#(.(x, .(_x, _y)), z)+#(.(_x, _y), z)*#(3, x).#(x, *(min, x))
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))*#(.(+(_y, _z), y), z)*#(+(_y, _z), z)
+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))).#(x, .(_y, _z))+#(.(x, .(x, *(2, z))), z)+#(.(x, *(2, z)), z)
*#(.(3, y), z)*#(3, z)*#(.(x, y), z).#(*(x, z), *(y, z))
.#(.(_x, *(2, __x31)), .(*(min, __x31), z))+#(.(_x, *(2, __x31)), *(min, __x31)).#(.(_x, .(__x33, __x32)), .(y, z))+#(.(_x, .(__x33, __x32)), y)
.#(.(_x, *(2, y)), .(y, z))+#(.(_x, *(2, y)), y)*#(+(y, z), .(_x, _y))*#(.(_x, _y), y)
+#(.(x, .(x, min)), min)+#(.(x, min), min).#(.(_x, 2), .(2, z))+#(.(_x, 2), 2)
*#(+(y, z), .(_x, _y))*#(.(_x, _y), z)+#(3, min).#(1, .(min, 2))
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))*#(.(x, .(_x, _y)), z)*#(.(_x, _y), z)
*#(+(y, z), 3)*#(3, z)*#(.(.(_x, _y), y), z)*#(.(_x, _y), z)
+#(.(x, 3), min)+#(3, min).#(3, .(min, z))+#(3, min)
+#(.(x, 2), 2).#(x, .(1, 0))+#(.(x, .(x, *(2, _x31))), *(min, _x31))+#(.(x, *(2, _x31)), *(min, _x31))
.#(.(_x, 3), .(y, z))+#(.(_x, 3), y)+#(.(x, .(x, .(_x33, _x32))), z)+#(.(x, .(_x33, _x32)), z)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), y)*#(+(y, z), 3)*#(3, y)
+#(.(x, .(x, 0)), z)+#(.(x, 0), z)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The dependency pairs +#(*(2, x), x) → *#(3, x) and *#(3, x) → .#(x, *(min, x)) are consolidated into the rule +#(*(2, x), x) → .#(x, *(min, x)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
*#(3, x) → .#(x, *(min, x))+#(*(2, x), x) → .#(x, *(min, x))
+#(*(2, x), x) → *#(3, x) 

Problem 21: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))*#(.(z, 3), z)*#(3, z)
+#(.(x, .(x, 3)), z)+#(.(x, 3), z).#(.(_x, 0), .(y, z))+#(.(_x, 0), y)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), z)+#(.(x, 0), .(_y, _z)).#(x, .(_y, _z))
+#(.(x, .(x, 2)), 2)+#(.(x, 2), 2).#(.(_x, min), .(min, z))+#(.(_x, min), min)
+#(.(x, min), min).#(x, .(min, 2))*#(+(y, z), x)+#(*(x, y), *(x, z))
+#(.(z, *(2, z)), z)+#(*(2, z), z).#(.(_x, _y), .(y, z))+#(.(_x, _y), y)
.#(x, .(y, z)).#(+(x, y), z)*#(.(x, +(_y, _z)), z)*#(+(_y, _z), z)
.#(*(2, y), .(y, z))+#(*(2, y), y)+#(.(x, .(_x, _y)), z)+#(.(_x, _y), z)
+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))*#(.(+(_y, _z), y), z)*#(+(_y, _z), z)
+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))).#(x, .(_y, _z))+#(.(x, .(x, *(2, z))), z)+#(.(x, *(2, z)), z)
*#(.(3, y), z)*#(3, z)*#(.(x, y), z).#(*(x, z), *(y, z))
.#(.(_x, *(2, __x31)), .(*(min, __x31), z))+#(.(_x, *(2, __x31)), *(min, __x31)).#(.(_x, .(__x33, __x32)), .(y, z))+#(.(_x, .(__x33, __x32)), y)
.#(.(_x, *(2, y)), .(y, z))+#(.(_x, *(2, y)), y)+#(*(2, x), x).#(x, *(min, x))
*#(+(y, z), .(_x, _y))*#(.(_x, _y), y).#(.(_x, 2), .(2, z))+#(.(_x, 2), 2)
+#(.(x, .(x, min)), min)+#(.(x, min), min)*#(+(y, z), .(_x, _y))*#(.(_x, _y), z)
+#(3, min).#(1, .(min, 2))*#(.(x, .(_x, _y)), z)*#(.(_x, _y), z)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, 3), min)+#(3, min)
*#(.(.(_x, _y), y), z)*#(.(_x, _y), z)*#(+(y, z), 3)*#(3, z)
.#(3, .(min, z))+#(3, min)+#(.(x, 2), 2).#(x, .(1, 0))
+#(.(x, .(x, *(2, _x31))), *(min, _x31))+#(.(x, *(2, _x31)), *(min, _x31)).#(.(_x, 3), .(y, z))+#(.(_x, 3), y)
+#(.(x, .(x, 0)), z)+#(.(x, 0), z)*#(+(y, z), 3)*#(3, y)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), y)+#(.(x, .(x, .(_x33, _x32))), z)+#(.(x, .(_x33, _x32)), z)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(.(z, 3), z) → *#(3, z) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(.(z, 3), z) → *#(3, z) is deleted.

Problem 22: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31))).#(.(_x, 0), .(y, z))+#(.(_x, 0), y)
+#(.(x, .(x, 3)), z)+#(.(x, 3), z)+#(.(x, 0), .(_y, _z)).#(x, .(_y, _z))
*#(+(y, z), +(_y, _z))*#(+(_y, _z), z)+#(.(x, .(x, 2)), 2)+#(.(x, 2), 2)
.#(.(_x, min), .(min, z))+#(.(_x, min), min)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(.(z, *(2, z)), z)+#(*(2, z), z)
.#(.(_x, _y), .(y, z))+#(.(_x, _y), y).#(x, .(y, z)).#(+(x, y), z)
*#(.(x, +(_y, _z)), z)*#(+(_y, _z), z).#(*(2, y), .(y, z))+#(*(2, y), y)
+#(.(x, .(_x, _y)), z)+#(.(_x, _y), z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(+(_y, _z), y), z)*#(+(_y, _z), z)+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))).#(x, .(_y, _z))
+#(.(x, .(x, *(2, z))), z)+#(.(x, *(2, z)), z)*#(.(3, y), z)*#(3, z)
*#(.(x, y), z).#(*(x, z), *(y, z)).#(.(_x, *(2, __x31)), .(*(min, __x31), z))+#(.(_x, *(2, __x31)), *(min, __x31))
.#(.(_x, .(__x33, __x32)), .(y, z))+#(.(_x, .(__x33, __x32)), y).#(.(_x, *(2, y)), .(y, z))+#(.(_x, *(2, y)), y)
+#(*(2, x), x).#(x, *(min, x))*#(+(y, z), .(_x, _y))*#(.(_x, _y), y)
+#(.(x, .(x, min)), min)+#(.(x, min), min).#(.(_x, 2), .(2, z))+#(.(_x, 2), 2)
*#(+(y, z), .(_x, _y))*#(.(_x, _y), z)+#(3, min).#(1, .(min, 2))
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))*#(.(x, .(_x, _y)), z)*#(.(_x, _y), z)
*#(+(y, z), 3)*#(3, z)*#(.(.(_x, _y), y), z)*#(.(_x, _y), z)
+#(.(x, 3), min)+#(3, min).#(3, .(min, z))+#(3, min)
+#(.(x, 2), 2).#(x, .(1, 0))+#(.(x, .(x, *(2, _x31))), *(min, _x31))+#(.(x, *(2, _x31)), *(min, _x31))
.#(.(_x, 3), .(y, z))+#(.(_x, 3), y)+#(.(x, .(x, .(_x33, _x32))), z)+#(.(x, .(_x33, _x32)), z)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), y)*#(+(y, z), 3)*#(3, y)
+#(.(x, .(x, 0)), z)+#(.(x, 0), z)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(.(3, y), z) → *#(3, z) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(.(3, y), z) → *#(3, z) is deleted.

Problem 23: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31)))+#(.(x, .(x, 3)), z)+#(.(x, 3), z)
.#(.(_x, 0), .(y, z))+#(.(_x, 0), y)*#(+(y, z), +(_y, _z))*#(+(_y, _z), z)
+#(.(x, 0), .(_y, _z)).#(x, .(_y, _z))+#(.(x, .(x, 2)), 2)+#(.(x, 2), 2)
.#(.(_x, min), .(min, z))+#(.(_x, min), min)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(.(z, *(2, z)), z)+#(*(2, z), z)
.#(.(_x, _y), .(y, z))+#(.(_x, _y), y).#(x, .(y, z)).#(+(x, y), z)
*#(.(x, +(_y, _z)), z)*#(+(_y, _z), z).#(*(2, y), .(y, z))+#(*(2, y), y)
+#(.(x, .(_x, _y)), z)+#(.(_x, _y), z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(+(_y, _z), y), z)*#(+(_y, _z), z)+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))).#(x, .(_y, _z))
+#(.(x, .(x, *(2, z))), z)+#(.(x, *(2, z)), z)*#(.(x, y), z).#(*(x, z), *(y, z))
.#(.(_x, *(2, __x31)), .(*(min, __x31), z))+#(.(_x, *(2, __x31)), *(min, __x31)).#(.(_x, .(__x33, __x32)), .(y, z))+#(.(_x, .(__x33, __x32)), y)
.#(.(_x, *(2, y)), .(y, z))+#(.(_x, *(2, y)), y)+#(*(2, x), x).#(x, *(min, x))
*#(+(y, z), .(_x, _y))*#(.(_x, _y), y).#(.(_x, 2), .(2, z))+#(.(_x, 2), 2)
+#(.(x, .(x, min)), min)+#(.(x, min), min)*#(+(y, z), .(_x, _y))*#(.(_x, _y), z)
+#(3, min).#(1, .(min, 2))*#(.(x, .(_x, _y)), z)*#(.(_x, _y), z)
+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))+#(.(x, 3), min)+#(3, min)
*#(.(.(_x, _y), y), z)*#(.(_x, _y), z)*#(+(y, z), 3)*#(3, z)
.#(3, .(min, z))+#(3, min)+#(.(x, 2), 2).#(x, .(1, 0))
+#(.(x, .(x, *(2, _x31))), *(min, _x31))+#(.(x, *(2, _x31)), *(min, _x31)).#(.(_x, 3), .(y, z))+#(.(_x, 3), y)
+#(.(x, .(x, 0)), z)+#(.(x, 0), z)*#(+(y, z), 3)*#(3, y)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), y)+#(.(x, .(x, .(_x33, _x32))), z)+#(.(x, .(_x33, _x32)), z)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: min, 3, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(+(y, z), 3) → *#(3, z) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(+(y, z), 3) → *#(3, z) is deleted.

Problem 24: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

+#(.(x, 3), _x31).#(x, .(1, +(min, _x31))).#(.(_x, 0), .(y, z))+#(.(_x, 0), y)
+#(.(x, .(x, 3)), z)+#(.(x, 3), z)+#(.(x, 0), .(_y, _z)).#(x, .(_y, _z))
*#(+(y, z), +(_y, _z))*#(+(_y, _z), z)+#(.(x, .(x, 2)), 2)+#(.(x, 2), 2)
.#(.(_x, min), .(min, z))+#(.(_x, min), min)+#(.(x, min), min).#(x, .(min, 2))
*#(+(y, z), x)+#(*(x, y), *(x, z))+#(.(z, *(2, z)), z)+#(*(2, z), z)
.#(.(_x, _y), .(y, z))+#(.(_x, _y), y).#(x, .(y, z)).#(+(x, y), z)
*#(.(x, +(_y, _z)), z)*#(+(_y, _z), z).#(*(2, y), .(y, z))+#(*(2, y), y)
+#(.(x, .(_x, _y)), z)+#(.(_x, _y), z)+#(.(x, *(2, _x41)), _x41).#(x, .(_x41, *(min, _x41)))
*#(.(+(_y, _z), y), z)*#(+(_y, _z), z)+#(.(x, *(2, .(_y, _z))), *(min, .(_y, _z))).#(x, .(_y, _z))
+#(.(x, .(x, *(2, z))), z)+#(.(x, *(2, z)), z)*#(.(x, y), z).#(*(x, z), *(y, z))
.#(.(_x, *(2, __x31)), .(*(min, __x31), z))+#(.(_x, *(2, __x31)), *(min, __x31)).#(.(_x, .(__x33, __x32)), .(y, z))+#(.(_x, .(__x33, __x32)), y)
.#(.(_x, *(2, y)), .(y, z))+#(.(_x, *(2, y)), y)+#(*(2, x), x).#(x, *(min, x))
*#(+(y, z), .(_x, _y))*#(.(_x, _y), y)+#(.(x, .(x, min)), min)+#(.(x, min), min)
.#(.(_x, 2), .(2, z))+#(.(_x, 2), 2)*#(+(y, z), .(_x, _y))*#(.(_x, _y), z)
+#(3, min).#(1, .(min, 2))+#(.(x, .(_x33, _x32)), _x31).#(x, .(_x33, +(_x32, _x31)))
*#(.(x, .(_x, _y)), z)*#(.(_x, _y), z)*#(.(.(_x, _y), y), z)*#(.(_x, _y), z)
+#(.(x, 3), min)+#(3, min).#(3, .(min, z))+#(3, min)
+#(.(x, 2), 2).#(x, .(1, 0))+#(.(x, .(x, *(2, _x31))), *(min, _x31))+#(.(x, *(2, _x31)), *(min, _x31))
.#(.(_x, 3), .(y, z))+#(.(_x, 3), y)+#(.(x, .(x, .(_x33, _x32))), z)+#(.(x, .(_x33, _x32)), z)
*#(+(y, z), +(_y, _z))*#(+(_y, _z), y)*#(+(y, z), 3)*#(3, y)
+#(.(x, .(x, 0)), z)+#(.(x, 0), z)

Rewrite Rules

*(0, x)0*(1, x)x
*(2, 2).(1, 0)*(3, x).(x, *(min, x))
*(min, min)1*(2, min).(min, 2)
*(.(x, y), z).(*(x, z), *(y, z))*(+(y, z), x)+(*(x, y), *(x, z))
+(0, x)x+(x, x)*(2, x)
+(1, 2)3+(1, min)0
+(2, min)1+(3, x).(1, +(min, x))
+(.(x, y), z).(x, +(y, z))+(*(2, x), x)*(3, x)
+(*(min, x), x)0+(*(2, v), *(min, v))v
.(min, 3)min.(x, min).(+(min, x), 3)
.(0, x)x.(x, .(y, z)).(+(x, y), z)

Original Signature

Termination of terms over the following signature is verified: 3, min, 2, 1, 0, *, +, .

Strategy


The right-hand side of the rule *#(+(y, z), 3) → *#(3, y) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
Thus, the rule *#(+(y, z), 3) → *#(3, y) is deleted.