TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (128ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 7 was processed with processor BackwardInstantiation (2ms).
 |    |    | – Problem 9 was processed with processor Propagation (3ms).
 |    |    |    | – Problem 11 remains open; application of the following processors failed [ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (0ms), Propagation (1ms)].
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor BackwardInstantiation (1ms).
 |    | – Problem 8 was processed with processor BackwardInstantiation (1ms).
 |    |    | – Problem 10 was processed with processor Propagation (2ms).
 |    |    |    | – Problem 12 remains open; application of the following processors failed [ForwardNarrowing (0ms), BackwardInstantiation (1ms), ForwardInstantiation (0ms), Propagation (1ms)].
 | – Problem 6 was processed with processor SubtermCriterion (0ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

ifTimes#(false, x, y, z, u)timesIter#(x, y, u)timesIter#(x, y, z)ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq




Open Dependency Pair Problem 5

Dependency Pairs

plus#(x, y)ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus#(false, x, y, z)plus#(x, z)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

plus#(x, y)minus#(x, s(0))plus#(x, y)eq#(x, 0)
ifTimes#(false, x, y, z, u)timesIter#(x, y, u)timesIter#(x, y, z)plus#(y, z)
plus#(x, y)ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))timesIter#(x, y, z)minus#(x, s(0))
ifPlus#(false, x, y, z)plus#(x, z)times#(x, y)timesIter#(x, y, 0)
timesIter#(x, y, z)eq#(x, 0)minus#(s(x), s(y))minus#(x, y)
inc#(s(x))inc#(x)eq#(s(x), s(y))eq#(x, y)
timesIter#(x, y, z)ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))plus#(x, y)inc#(x)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


The following SCCs where found

plus#(x, y) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus#(false, x, y, z) → plus#(x, z)

ifTimes#(false, x, y, z, u) → timesIter#(x, y, u)timesIter#(x, y, z) → ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))

minus#(s(x), s(y)) → minus#(x, y)

eq#(s(x), s(y)) → eq#(x, y)

inc#(s(x)) → inc#(x)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

inc#(s(x))inc#(x)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

inc#(s(x))inc#(x)

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

ifTimes#(false, x, y, z, u)timesIter#(x, y, u)timesIter#(x, y, z)ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Instantiation

For all potential predecessors l → r of the rule timesIter#(x, y, z) → ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z)) on dependency pair chains it holds that: Thus, timesIter#(x, y, z) → ifTimes#(eq(x, 0), minus(x, s(0)), y, z, plus(y, z)) is replaced by instances determined through the above matching. These instances are:
timesIter#(_x, _y, _u) → ifTimes#(eq(_x, 0), minus(_x, s(0)), _y, _u, plus(_y, _u))

Problem 7: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

ifTimes#(false, x, y, z, u)timesIter#(x, y, u)timesIter#(_x, _y, _u)ifTimes#(eq(_x, 0), minus(_x, s(0)), _y, _u, plus(_y, _u))

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Instantiation

For all potential predecessors l → r of the rule timesIter#(_x, _y, _u) → ifTimes#(eq(_x, 0), minus(_x, s(0)), _y, _u, plus(_y, _u)) on dependency pair chains it holds that: Thus, timesIter#(_x, _y, _u) → ifTimes#(eq(_x, 0), minus(_x, s(0)), _y, _u, plus(_y, _u)) is replaced by instances determined through the above matching. These instances are:
timesIter#(x, y, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u))

Problem 9: Propagation



Dependency Pair Problem

Dependency Pairs

ifTimes#(false, x, y, z, u)timesIter#(x, y, u)timesIter#(x, y, u)ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u))

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


The dependency pairs ifTimes#(false, x, y, z, u) → timesIter#(x, y, u) and timesIter#(x, y, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u)) are consolidated into the rule ifTimes#(false, x, y, z, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u)) .

This is possible as

The dependency pairs ifTimes#(false, x, y, z, u) → timesIter#(x, y, u) and timesIter#(x, y, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u)) are consolidated into the rule ifTimes#(false, x, y, z, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
ifTimes#(false, x, y, z, u) → timesIter#(x, y, u)ifTimes#(false, x, y, z, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u))
timesIter#(x, y, u) → ifTimes#(eq(x, 0), minus(x, s(0)), y, u, plus(y, u)) 

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(x), s(y))eq#(x, y)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(x), s(y))eq#(x, y)

Problem 5: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(x, y)ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus#(false, x, y, z)plus#(x, z)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Instantiation

For all potential predecessors l → r of the rule plus#(x, y) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) on dependency pair chains it holds that: Thus, plus#(x, y) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) is replaced by instances determined through the above matching. These instances are:
plus#(_x, _z) → ifPlus#(eq(_x, 0), minus(_x, s(0)), _x, inc(_x))

Problem 8: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

plus#(_x, _z)ifPlus#(eq(_x, 0), minus(_x, s(0)), _x, inc(_x))ifPlus#(false, x, y, z)plus#(x, z)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Instantiation

For all potential predecessors l → r of the rule plus#(_x, _z) → ifPlus#(eq(_x, 0), minus(_x, s(0)), _x, inc(_x)) on dependency pair chains it holds that: Thus, plus#(_x, _z) → ifPlus#(eq(_x, 0), minus(_x, s(0)), _x, inc(_x)) is replaced by instances determined through the above matching. These instances are:
plus#(x, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))

Problem 10: Propagation



Dependency Pair Problem

Dependency Pairs

plus#(x, z)ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus#(false, x, y, z)plus#(x, z)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


The dependency pairs ifPlus#(false, x, y, z) → plus#(x, z) and plus#(x, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) are consolidated into the rule ifPlus#(false, x, y, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) .

This is possible as

The dependency pairs ifPlus#(false, x, y, z) → plus#(x, z) and plus#(x, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) are consolidated into the rule ifPlus#(false, x, y, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
plus#(x, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus#(false, x, y, z) → ifPlus#(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus#(false, x, y, z) → plus#(x, z) 

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

inc(s(x))s(inc(x))inc(0)s(0)
plus(x, y)ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))ifPlus(false, x, y, z)plus(x, z)
ifPlus(true, x, y, z)yminus(s(x), s(y))minus(x, y)
minus(0, x)0minus(x, 0)x
minus(x, x)0eq(s(x), s(y))eq(x, y)
eq(0, s(x))falseeq(s(x), 0)false
eq(0, 0)trueeq(x, x)true
times(x, y)timesIter(x, y, 0)timesIter(x, y, z)ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u)zifTimes(false, x, y, z, u)timesIter(x, y, u)
fgfh

Original Signature

Termination of terms over the following signature is verified: f, g, plus, ifTimes, minus, true, h, ifPlus, timesIter, 0, inc, s, times, false, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)