TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60263 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (77ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (0ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 6 was processed with processor BackwardInstantiation (2ms).
 |    |    | – Problem 7 was processed with processor Propagation (3ms).
 |    |    |    | – Problem 8 remains open; application of the following processors failed [ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (1ms), Propagation (0ms)].

The following open problems remain:



Open Dependency Pair Problem 5

Dependency Pairs

if#(false, xs, ys, zs)rev#(xs, ys)rev#(xs, ys)if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: append, isEmpty, reverse, rev, dropLast, last, if, false, true, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if#(false, xs, ys, zs)rev#(xs, ys)rev#(xs, ys)append#(ys, last(xs))
rev#(xs, ys)isEmpty#(xs)rev#(xs, ys)if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)
dropLast#(cons(x, cons(y, ys)))dropLast#(cons(y, ys))last#(cons(x, cons(y, ys)))last#(cons(y, ys))
append#(cons(x, xs), ys)append#(xs, ys)rev#(xs, ys)dropLast#(xs)
reverse#(xs)rev#(xs, nil)rev#(xs, ys)last#(xs)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


The following SCCs where found

dropLast#(cons(x, cons(y, ys))) → dropLast#(cons(y, ys))

append#(cons(x, xs), ys) → append#(xs, ys)

last#(cons(x, cons(y, ys))) → last#(cons(y, ys))

if#(false, xs, ys, zs) → rev#(xs, ys)rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

last#(cons(x, cons(y, ys)))last#(cons(y, ys))

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

last#(cons(x, cons(y, ys)))last#(cons(y, ys))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

append#(cons(x, xs), ys)append#(xs, ys)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

append#(cons(x, xs), ys)append#(xs, ys)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

dropLast#(cons(x, cons(y, ys)))dropLast#(cons(y, ys))

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

dropLast#(cons(x, cons(y, ys)))dropLast#(cons(y, ys))

Problem 5: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, xs, ys, zs)rev#(xs, ys)rev#(xs, ys)if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


Instantiation

For all potential predecessors l → r of the rule rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) on dependency pair chains it holds that: Thus, rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) is replaced by instances determined through the above matching. These instances are:
rev#(_xs, _ys) → if#(isEmpty(_xs), dropLast(_xs), append(_ys, last(_xs)), _ys)

Problem 6: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, xs, ys, zs)rev#(xs, ys)rev#(_xs, _ys)if#(isEmpty(_xs), dropLast(_xs), append(_ys, last(_xs)), _ys)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: append, isEmpty, reverse, rev, dropLast, last, if, false, true, cons, nil

Strategy


Instantiation

For all potential predecessors l → r of the rule rev#(_xs, _ys) → if#(isEmpty(_xs), dropLast(_xs), append(_ys, last(_xs)), _ys) on dependency pair chains it holds that: Thus, rev#(_xs, _ys) → if#(isEmpty(_xs), dropLast(_xs), append(_ys, last(_xs)), _ys) is replaced by instances determined through the above matching. These instances are:
rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)

Problem 7: Propagation



Dependency Pair Problem

Dependency Pairs

if#(false, xs, ys, zs)rev#(xs, ys)rev#(xs, ys)if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)

Rewrite Rules

isEmpty(nil)trueisEmpty(cons(x, xs))false
last(cons(x, nil))xlast(cons(x, cons(y, ys)))last(cons(y, ys))
dropLast(nil)nildropLast(cons(x, nil))nil
dropLast(cons(x, cons(y, ys)))cons(x, dropLast(cons(y, ys)))append(nil, ys)ys
append(cons(x, xs), ys)cons(x, append(xs, ys))reverse(xs)rev(xs, nil)
rev(xs, ys)if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)if(true, xs, ys, zs)zs
if(false, xs, ys, zs)rev(xs, ys)

Original Signature

Termination of terms over the following signature is verified: isEmpty, append, dropLast, rev, reverse, last, if, true, false, nil, cons

Strategy


The dependency pairs if#(false, xs, ys, zs) → rev#(xs, ys) and rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) are consolidated into the rule if#(false, xs, ys, zs) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) .

This is possible as

The dependency pairs if#(false, xs, ys, zs) → rev#(xs, ys) and rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) are consolidated into the rule if#(false, xs, ys, zs) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
if#(false, xs, ys, zs) → rev#(xs, ys)if#(false, xs, ys, zs) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)
rev#(xs, ys) → if#(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys)