TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (72ms).
 | – Problem 2 was processed with processor BackwardInstantiation (3ms).
 |    | – Problem 4 was processed with processor BackwardInstantiation (5ms).
 |    |    | – Problem 5 was processed with processor ForwardInstantiation (3ms).
 |    |    |    | – Problem 6 was processed with processor Propagation (11ms).
 |    |    |    |    | – Problem 7 was processed with processor BackwardInstantiation (5ms).
 |    |    |    |    |    | – Problem 8 remains open; application of the following processors failed [ForwardInstantiation (5ms), Propagation (5ms)].
 | – Problem 3 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

count#(n, x)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if#(false, false, n, m, x, y)count#(m, x)
if#(false, true, n, m, x, y)count#(n, y)

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

count#(n, x)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if#(false, false, n, m, x, y)count#(m, x)
nrOfNodes#(n)count#(n, 0)count#(n, x)isEmpty#(left(n))
if#(false, true, n, m, x, y)count#(n, y)count#(n, x)isEmpty#(n)
count#(n, x)right#(n)count#(n, x)left#(n)
inc#(s(x))inc#(x)count#(n, x)inc#(x)
count#(n, x)left#(left(n))count#(n, x)right#(left(n))

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


The following SCCs where found

inc#(s(x)) → inc#(x)

if#(false, false, n, m, x, y) → count#(m, x)count#(n, x) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))
if#(false, true, n, m, x, y) → count#(n, y)

Problem 2: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, false, n, m, x, y)count#(m, x)count#(n, x)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))
if#(false, true, n, m, x, y)count#(n, y)

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


Instantiation

For all potential predecessors l → r of the rule count#(n, x) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) on dependency pair chains it holds that: Thus, count#(n, x) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) is replaced by instances determined through the above matching. These instances are:
count#(_n, _y) → if#(isEmpty(_n), isEmpty(left(_n)), right(_n), node(left(left(_n)), node(right(left(_n)), right(_n))), _y, inc(_y))count#(_m, _x) → if#(isEmpty(_m), isEmpty(left(_m)), right(_m), node(left(left(_m)), node(right(left(_m)), right(_m))), _x, inc(_x))

Problem 4: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, false, n, m, x, y)count#(m, x)if#(false, true, n, m, x, y)count#(n, y)
count#(_n, _y)if#(isEmpty(_n), isEmpty(left(_n)), right(_n), node(left(left(_n)), node(right(left(_n)), right(_n))), _y, inc(_y))count#(_m, _x)if#(isEmpty(_m), isEmpty(left(_m)), right(_m), node(left(left(_m)), node(right(left(_m)), right(_m))), _x, inc(_x))

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


Instantiation

For all potential predecessors l → r of the rule count#(_n, _y) → if#(isEmpty(_n), isEmpty(left(_n)), right(_n), node(left(left(_n)), node(right(left(_n)), right(_n))), _y, inc(_y)) on dependency pair chains it holds that: Thus, count#(_n, _y) → if#(isEmpty(_n), isEmpty(left(_n)), right(_n), node(left(left(_n)), node(right(left(_n)), right(_n))), _y, inc(_y)) is replaced by instances determined through the above matching. These instances are:
count#(m, x) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))count#(n, y) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y))

Instantiation

For all potential predecessors l → r of the rule count#(_m, _x) → if#(isEmpty(_m), isEmpty(left(_m)), right(_m), node(left(left(_m)), node(right(left(_m)), right(_m))), _x, inc(_x)) on dependency pair chains it holds that: Thus, count#(_m, _x) → if#(isEmpty(_m), isEmpty(left(_m)), right(_m), node(left(left(_m)), node(right(left(_m)), right(_m))), _x, inc(_x)) is replaced by instances determined through the above matching. These instances are:
count#(m, x) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))count#(n, y) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y))

Problem 5: ForwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, false, n, m, x, y)count#(m, x)if#(false, true, n, m, x, y)count#(n, y)
count#(m, x)if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))count#(n, y)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y))

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


Instantiation

For all potential successors l → r of the rule if#(false, false, n, m, x, y) → count#(m, x) on dependency pair chains it holds that: Thus, if#(false, false, n, m, x, y) → count#(m, x) is replaced by instances determined through the above matching. These instances are:
if#(false, false, n, m, x, y) → count#(m, x)if#(false, false, m, m, x, x) → count#(m, x)

Instantiation

For all potential successors l → r of the rule if#(false, true, n, m, x, y) → count#(n, y) on dependency pair chains it holds that: Thus, if#(false, true, n, m, x, y) → count#(n, y) is replaced by instances determined through the above matching. These instances are:
if#(false, true, n, m, x, y) → count#(n, y)if#(false, true, n, n, y, y) → count#(n, y)

Problem 6: Propagation



Dependency Pair Problem

Dependency Pairs

if#(false, false, n, m, x, y)count#(m, x)if#(false, true, n, m, x, y)count#(n, y)
if#(false, false, m, m, x, x)count#(m, x)count#(m, x)if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))
count#(n, y)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y))if#(false, true, n, n, y, y)count#(n, y)

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


The dependency pairs if#(false, false, n, m, x, y) → count#(m, x) and count#(m, x) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x)) are consolidated into the rule if#(false, false, n, m, x, y) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
if#(false, false, n, m, x, y) → count#(m, x)if#(false, false, n, m, x, y) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))
count#(m, x) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x)) 

Problem 7: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if#(false, true, n, m, x, y)count#(n, y)if#(false, false, m, m, x, x)count#(m, x)
count#(n, y)if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y))if#(false, false, n, m, x, y)if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))
if#(false, true, n, n, y, y)count#(n, y)

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


Instantiation

For all potential predecessors l → r of the rule count#(n, y) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y)) on dependency pair chains it holds that: Thus, count#(n, y) → if#(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), y, inc(y)) is replaced by instances determined through the above matching. These instances are:
count#(m, x) → if#(isEmpty(m), isEmpty(left(m)), right(m), node(left(left(m)), node(right(left(m)), right(m))), x, inc(x))count#(_n, _y) → if#(isEmpty(_n), isEmpty(left(_n)), right(_n), node(left(left(_n)), node(right(left(_n)), right(_n))), _y, inc(_y))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

inc#(s(x))inc#(x)

Rewrite Rules

isEmpty(empty)trueisEmpty(node(l, r))false
left(empty)emptyleft(node(l, r))l
right(empty)emptyright(node(l, r))r
inc(0)s(0)inc(s(x))s(inc(x))
count(n, x)if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x))if(true, b, n, m, x, y)x
if(false, false, n, m, x, y)count(m, x)if(false, true, n, m, x, y)count(n, y)
nrOfNodes(n)count(n, 0)

Original Signature

Termination of terms over the following signature is verified: nrOfNodes, count, true, isEmpty, node, 0, s, inc, if, empty, false, left, right

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

inc#(s(x))inc#(x)