TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60018 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (2385ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (1612ms), PolynomialLinearRange4iUR (timeout), DependencyGraph (1529ms), PolynomialLinearRange8NegiUR (30037ms), ReductionPairSAT (14326ms)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(s)
te#(msubst(te(a), sortSu(id)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))te#(msubst(te(a), sortSu(t)))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(t)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))te#(a)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(circ(sortSu(s), sortSu(t)))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(s)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(s)
te#(subst(te(a), sortSu(id)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(u)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(t)
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(s)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(s)
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(circ(sortSu(t), sortSu(u)))te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te#(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(t)sortSu#(circ(sortSu(id), sortSu(s)))sortSu#(s)
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(u)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(t)
sortSu#(circ(sortSu(s), sortSu(id)))sortSu#(s)sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(s)

Rewrite Rules

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id)))sortSu(s)sortSu(circ(sortSu(id), sortSu(s)))sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))te(subst(te(a), sortSu(id)))te(a)
te(msubst(te(a), sortSu(id)))te(a)te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Original Signature

Termination of terms over the following signature is verified: id, circ, subst, lift, te, sop, msubst, cons, sortSu


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(s)te#(msubst(te(a), sortSu(id)))te#(a)
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))te#(msubst(te(a), sortSu(t)))sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(circ(sortSu(s), sortSu(t)))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(t)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))te#(a)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))te#(a)te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))sortSu#(s)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(s)
te#(subst(te(a), sortSu(id)))te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu#(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(u)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(t)sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(s)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu#(s)sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(circ(sortSu(t), sortSu(u)))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te#(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))sortSu#(circ(sortSu(id), sortSu(s)))sortSu#(s)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(t)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(u)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu#(t)
sortSu#(circ(sortSu(s), sortSu(id)))sortSu#(s)sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu#(s)

Rewrite Rules

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t)))sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t)))))sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t)))))sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u)))sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id)))sortSu(s)sortSu(circ(sortSu(id), sortSu(s)))sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u)))))sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))te(subst(te(a), sortSu(id)))te(a)
te(msubst(te(a), sortSu(id)))te(a)te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t)))te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Original Signature

Termination of terms over the following signature is verified: id, circ, subst, lift, te, msubst, sop, sortSu, cons

Strategy


The following SCCs where found

te#(msubst(te(a), sortSu(id))) → te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu#(s)
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu#(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → te#(msubst(te(a), sortSu(t)))sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu#(circ(sortSu(s), sortSu(t)))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → sortSu#(t)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → te#(a)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → te#(a)te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → sortSu#(circ(sortSu(s), sortSu(t)))
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu#(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → sortSu#(s)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu#(s)
te#(subst(te(a), sortSu(id))) → te#(a)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu#(u)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu#(circ(sortSu(s), sortSu(t)))sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu#(t)
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu#(s)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu#(s)
te#(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te#(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu#(circ(sortSu(t), sortSu(u)))
sortSu#(circ(sortSu(id), sortSu(s))) → sortSu#(s)sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu#(t)
sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu#(u)sortSu#(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu#(t)
sortSu#(circ(sortSu(s), sortSu(id))) → sortSu#(s)sortSu#(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu#(t)
sortSu#(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu#(s)