TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60001 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (76ms).
| Problem 2 was processed with processor SubtermCriterion (1ms).
| Problem 3 was processed with processor PolynomialLinearRange4iUR (525ms).
| | Problem 6 was processed with processor ForwardNarrowing (2ms).
| | | Problem 8 was processed with processor ForwardNarrowing (6ms).
| | | | Problem 9 was processed with processor ForwardNarrowing (4ms).
| | | | | Problem 10 was processed with processor ForwardNarrowing (3ms).
| | | | | | Problem 11 was processed with processor ForwardNarrowing (5ms).
| | | | | | | Problem 12 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | Problem 13 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | Problem 14 was processed with processor ForwardNarrowing (7ms).
| | | | | | | | | | Problem 15 was processed with processor ForwardNarrowing (8ms).
| | | | | | | | | | | Problem 16 was processed with processor ForwardNarrowing (5ms).
| | | | | | | | | | | | Problem 17 was processed with processor ForwardNarrowing (5ms).
| | | | | | | | | | | | | Problem 18 was processed with processor ForwardNarrowing (5ms).
| | | | | | | | | | | | | | Problem 19 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | | | | | | | | Problem 20 was processed with processor ForwardNarrowing (10ms).
| | | | | | | | | | | | | | | | Problem 21 was processed with processor ForwardNarrowing (6ms).
| | | | | | | | | | | | | | | | | Problem 22 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | | | | | | | | | | | Problem 23 was processed with processor ForwardNarrowing (4ms).
| | | | | | | | | | | | | | | | | | | Problem 24 was processed with processor ForwardNarrowing (3ms).
| | | | | | | | | | | | | | | | | | | | Problem 25 was processed with processor ForwardNarrowing (5ms).
| | | | | | | | | | | | | | | | | | | | | Problem 26 was processed with processor ForwardNarrowing (5ms).
| | | | | | | | | | | | | | | | | | | | | | Problem 27 was processed with processor ForwardNarrowing (14ms).
| | | | | | | | | | | | | | | | | | | | | | | Problem 28 was processed with processor ForwardNarrowing (8ms).
| | | | | | | | | | | | | | | | | | | | | | | | Problem 29 was processed with processor ForwardNarrowing (21ms).
| | | | | | | | | | | | | | | | | | | | | | | | | Problem 30 was processed with processor ForwardNarrowing (30ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | Problem 31 was processed with processor ForwardNarrowing (20ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 32 was processed with processor ForwardNarrowing (29ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 33 was processed with processor ForwardNarrowing (103ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 34 was processed with processor ForwardNarrowing (83ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 35 was processed with processor ForwardNarrowing (224ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 36 was processed with processor ForwardNarrowing (233ms).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Problem 37 remains open; application of the following processors failed [ForwardNarrowing (264ms), ForwardNarrowing (349ms), ForwardNarrowing (207ms), ForwardNarrowing (333ms), ForwardNarrowing (265ms), ForwardNarrowing (251ms), ForwardNarrowing (385ms), ForwardNarrowing (412ms), ForwardNarrowing (434ms), ForwardNarrowing (443ms), ForwardNarrowing (473ms), ForwardNarrowing (485ms), ForwardNarrowing (64ms), ForwardNarrowing (136ms), ForwardNarrowing (597ms), ForwardNarrowing (87ms), ForwardNarrowing (529ms), ForwardNarrowing (421ms), ForwardNarrowing (55ms), ForwardNarrowing (147ms), ForwardNarrowing (71ms), ForwardNarrowing (457ms), ForwardNarrowing (478ms), ForwardNarrowing (332ms), ForwardNarrowing (508ms), ForwardNarrowing (336ms), ForwardNarrowing (624ms), ForwardNarrowing (687ms), ForwardNarrowing (348ms), ForwardNarrowing (437ms), ForwardNarrowing (511ms), ForwardNarrowing (589ms), ForwardNarrowing (500ms), ForwardNarrowing (143ms), ForwardNarrowing (272ms), ForwardNarrowing (99ms), ForwardNarrowing (220ms), ForwardNarrowing (289ms), ForwardNarrowing (223ms), ForwardNarrowing (198ms), ForwardNarrowing (timeout)].
| Problem 4 was processed with processor PolynomialLinearRange4iUR (331ms).
| | Problem 7 remains open; application of the following processors failed [DependencyGraph (1ms), PolynomialLinearRange4iUR (289ms), DependencyGraph (1ms), PolynomialLinearRange8NegiUR (2626ms), DependencyGraph (0ms), ReductionPairSAT (550ms), DependencyGraph (0ms), SizeChangePrinciple (20ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (3ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (3ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (4ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (6ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (4ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms)].
| Problem 5 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (1ms), PolynomialLinearRange4iUR (276ms), DependencyGraph (1ms), PolynomialLinearRange4iUR (273ms), DependencyGraph (1ms), PolynomialLinearRange8NegiUR (1343ms), DependencyGraph (1ms), ReductionPairSAT (569ms), DependencyGraph (0ms), SizeChangePrinciple (30ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (5ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (33ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (34ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (24ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (13ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (2ms), ForwardNarrowing (0ms), ForwardNarrowing (9ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (11ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (24ms), ForwardNarrowing (23ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (3ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (3ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (1ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms), ForwardNarrowing (0ms)].
The following open problems remain:
Open Dependency Pair Problem 5
Dependency Pairs
plus#(s(x), y) | → | plus#(y, minus(s(x), s(0))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Open Dependency Pair Problem 6
Dependency Pairs
minus#(s(x), s(y)) | → | minus#(p(s(x)), p(s(y))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Open Dependency Pair Problem 7
Dependency Pairs
div#(s(x), s(y)) | → | div#(minus(x, y), s(y)) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
div#(plus(x, y), z) | → | div#(x, z) | | minus#(s(x), s(y)) | → | p#(s(x)) |
minus#(x, plus(y, z)) | → | minus#(minus(x, y), z) | | minus#(s(x), s(y)) | → | minus#(p(s(x)), p(s(y))) |
plus#(s(x), y) | → | plus#(y, minus(s(x), s(0))) | | minus#(s(x), s(y)) | → | p#(s(y)) |
div#(s(x), s(y)) | → | minus#(x, y) | | div#(plus(x, y), z) | → | div#(y, z) |
div#(plus(x, y), z) | → | plus#(div(x, z), div(y, z)) | | plus#(s(x), y) | → | minus#(s(x), s(0)) |
p#(s(s(x))) | → | p#(s(x)) | | div#(s(x), s(y)) | → | div#(minus(x, y), s(y)) |
minus#(x, plus(y, z)) | → | minus#(x, y) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The following SCCs where found
div#(plus(x, y), z) → div#(x, z) | div#(plus(x, y), z) → div#(y, z) |
div#(s(x), s(y)) → div#(minus(x, y), s(y)) |
minus#(x, plus(y, z)) → minus#(minus(x, y), z) | minus#(s(x), s(y)) → minus#(p(s(x)), p(s(y))) |
minus#(x, plus(y, z)) → minus#(x, y) |
plus#(s(x), y) → plus#(y, minus(s(x), s(0))) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
Problem 3: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
minus#(x, plus(y, z)) | → | minus#(minus(x, y), z) | | minus#(s(x), s(y)) | → | minus#(p(s(x)), p(s(y))) |
minus#(x, plus(y, z)) | → | minus#(x, y) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
Polynomial Interpretation
- 0: 3
- div(x,y): 0
- minus(x,y): 0
- minus#(x,y): y
- p(x): 0
- plus(x,y): y + x + 2
- s(x): 0
Improved Usable rules
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
minus#(x, plus(y, z)) | → | minus#(minus(x, y), z) | | minus#(x, plus(y, z)) | → | minus#(x, y) |
Problem 6: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(x), s(y)) | → | minus#(p(s(x)), p(s(y))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(
x), s(
y)) → minus
#(p(s(
x)), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(p(s(x)), s(p(s(_x31)))) | |
minus#(s(p(s(_x21))), p(s(y))) | |
Thus, the rule minus
#(s(
x), s(
y)) → minus
#(p(s(
x)), p(s(
y))) is replaced by the following rules:
minus#(s(s(_x21)), s(y)) → minus#(s(p(s(_x21))), p(s(y))) | minus#(s(x), s(s(_x31))) → minus#(p(s(x)), s(p(s(_x31)))) |
Problem 8: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(_x21)), s(y)) | → | minus#(s(p(s(_x21))), p(s(y))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(
_x21)), s(
y)) → minus
#(s(p(s(
_x21))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(p(s(_x41)))), p(s(y))) | |
minus#(s(p(s(_x21))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(
_x21)), s(
y)) → minus
#(s(p(s(
_x21))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(_x41))), s(y)) → minus#(s(s(p(s(_x41)))), p(s(y))) | minus#(s(s(_x21)), s(s(_x31))) → minus#(s(p(s(_x21))), s(p(s(_x31)))) |
Problem 9: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(y)) | → | minus#(s(s(p(s(_x41)))), p(s(y))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(
_x41))), s(
y)) → minus
#(s(s(p(s(
_x41)))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(p(s(_x51))))), p(s(y))) | |
minus#(s(s(p(s(_x41)))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(
_x41))), s(
y)) → minus
#(s(s(p(s(
_x41)))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(_x51)))), s(y)) → minus#(s(s(s(p(s(_x51))))), p(s(y))) | minus#(s(s(s(_x41))), s(s(_x31))) → minus#(s(s(p(s(_x41)))), s(p(s(_x31)))) |
Problem 10: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(y)) | → | minus#(s(s(s(p(s(_x51))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(_x31))) | → | minus#(s(s(p(s(_x41)))), s(p(s(_x31)))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(
_x41))), s(s(
_x31))) → minus
#(s(s(p(s(
_x41)))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | |
minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | |
Thus, the rule minus
#(s(s(s(
_x41))), s(s(
_x31))) → minus
#(s(s(p(s(
_x41)))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(_x51)))), s(s(_x31))) → minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | minus#(s(s(s(_x41))), s(s(s(_x51)))) → minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
Problem 11: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(y)) | → | minus#(s(s(s(p(s(_x51))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(
_x51)))), s(s(
_x31))) → minus
#(s(s(s(p(s(
_x51))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(
_x51)))), s(s(
_x31))) → minus
#(s(s(s(p(s(
_x51))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) → minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) → minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
Problem 12: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
minus#(s(s(s(s(_x51)))), s(y)) | → | minus#(s(s(s(p(s(_x51))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(
_x51)))), s(
y)) → minus
#(s(s(s(p(s(
_x51))))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | |
minus#(s(s(s(s(p(s(_x61)))))), p(s(y))) | |
Thus, the rule minus
#(s(s(s(s(
_x51)))), s(
y)) → minus
#(s(s(s(p(s(
_x51))))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(s(_x61))))), s(y)) → minus#(s(s(s(s(p(s(_x61)))))), p(s(y))) | minus#(s(s(s(s(_x51)))), s(s(_x31))) → minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
Problem 13: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(_x61))))), s(y)) | → | minus#(s(s(s(s(p(s(_x61)))))), p(s(y))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(
_x61))))), s(
y)) → minus
#(s(s(s(s(p(s(
_x61)))))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | |
minus#(s(s(s(s(s(p(s(_x71))))))), p(s(y))) | |
Thus, the rule minus
#(s(s(s(s(s(
_x61))))), s(
y)) → minus
#(s(s(s(s(p(s(
_x61)))))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(s(s(_x71)))))), s(y)) → minus#(s(s(s(s(s(p(s(_x71))))))), p(s(y))) | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) → minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
Problem 14: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(_x71)))))), s(y)) | → | minus#(s(s(s(s(s(p(s(_x71))))))), p(s(y))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(
y)) → minus
#(s(s(s(s(s(p(s(
_x71))))))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(p(s(_x81)))))))), p(s(y))) | |
minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(
y)) → minus
#(s(s(s(s(s(p(s(
_x71))))))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(s(_x81))))))), s(y)) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), p(s(y))) |
Problem 15: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(y)) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), p(s(y))) | | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
Problem 16: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(y)) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), p(s(y))) | | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
Problem 17: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(y)) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), p(s(y))) |
minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(
y)) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) | |
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(
y)) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
Problem 18: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
Problem 19: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(
_x61))))), s(s(
_x31))) → minus
#(s(s(s(s(p(s(
_x61)))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | |
minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | |
Thus, the rule minus
#(s(s(s(s(s(
_x61))))), s(s(
_x31))) → minus
#(s(s(s(s(p(s(
_x61)))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) → minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
Problem 20: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
Problem 21: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
Problem 22: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(_x51)))), s(s(_x31))) | → | minus#(s(s(s(p(s(_x51))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(
_x51)))), s(s(
_x31))) → minus
#(s(s(s(p(s(
_x51))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(
_x51)))), s(s(
_x31))) → minus
#(s(s(s(p(s(
_x51))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) → minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(_x61))))), s(s(_x31))) → minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) |
Problem 23: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(_x31))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(
_x61))))), s(s(
_x31))) → minus
#(s(s(s(s(p(s(
_x61)))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | |
minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | |
Thus, the rule minus
#(s(s(s(s(s(
_x61))))), s(s(
_x31))) → minus
#(s(s(s(s(p(s(
_x61)))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) → minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
Problem 24: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(_x71)))))), s(s(_x31))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(
_x71)))))), s(s(
_x31))) → minus
#(s(s(s(s(s(p(s(
_x71))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
Problem 25: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) |
minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(
_x81))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(p(s(
_x81)))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) |
Problem 26: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), p(s(y))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(_x31))) | → | minus#(s(p(s(_x21))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(
_x91)))))))), s(
y)) → minus
#(s(s(s(s(s(s(s(p(s(
_x91))))))))), p(s(
y))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), p(s(y))) | |
minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(
_x91)))))))), s(
y)) → minus
#(s(s(s(s(s(s(s(p(s(
_x91))))))))), p(s(
y))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(y)) → minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), p(s(y))) |
Problem 27: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), p(s(y))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(s(_x51)))) | → | minus#(s(p(s(_x21))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(p(s(_x31)))) |
minus#(s(x), s(s(_x31))) | → | minus#(p(s(x)), s(p(s(_x31)))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x231))))))))))))))))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x231)))))))))))))))))))))), s(p(s(
_x31)))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) | |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(p(s(_x31)))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x231))))))))))))))))))))), s(s(
_x31))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x231)))))))))))))))))))))), s(p(s(
_x31)))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(_x31))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(p(s(_x31)))) | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) |
Problem 28: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(_x21)), s(s(s(s(s(_x71)))))) | → | minus#(s(p(s(_x21))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(_x41))), s(s(s(s(_x61))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(_x51)))) | → | minus#(s(s(p(s(_x41)))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), p(s(y))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(
_x21)), s(s(s(s(s(
_x71)))))) → minus
#(s(p(s(
_x21))), s(s(s(s(p(s(
_x71))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(p(s(_x21))), s(s(s(s(s(p(s(_x81)))))))) | |
minus#(s(s(p(s(_x41)))), s(s(s(s(p(s(_x71))))))) | |
Thus, the rule minus
#(s(s(
_x21)), s(s(s(s(s(
_x71)))))) → minus
#(s(p(s(
_x21))), s(s(s(s(p(s(
_x71))))))) is replaced by the following rules:
minus#(s(s(_x21)), s(s(s(s(s(s(_x81))))))) → minus#(s(p(s(_x21))), s(s(s(s(s(p(s(_x81)))))))) | minus#(s(s(s(_x41))), s(s(s(s(s(_x71)))))) → minus#(s(s(p(s(_x41)))), s(s(s(s(p(s(_x71))))))) |
Problem 29: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), p(s(y))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(
_x151)))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x151))))))))))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | |
minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) | |
Thus, the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(
_x151)))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x151))))))))))))))) is replaced by the following rules:
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) → minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) → minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Problem 30: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(_x51)))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), p(s(y))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(
_x121))))))))))), s(s(s(s(
_x61))))) → minus
#(s(s(s(s(s(s(s(s(s(s(p(s(
_x121)))))))))))), s(s(s(p(s(
_x61)))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(p(s(_x61)))))) | |
minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(p(s(_x71))))))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(
_x121))))))))))), s(s(s(s(
_x61))))) → minus
#(s(s(s(s(s(s(s(s(s(s(p(s(
_x121)))))))))))), s(s(s(p(s(
_x61)))))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(_x61))))) → minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(p(s(_x61)))))) | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(_x71)))))) → minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(p(s(_x71))))))) |
Problem 31: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), p(s(y))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(
_x121))))))))))), s(s(s(s(s(s(
_x81))))))) → minus
#(s(s(s(s(s(s(s(s(s(s(p(s(
_x121)))))))))))), s(s(s(s(s(p(s(
_x81)))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | |
minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(
_x121))))))))))), s(s(s(s(s(s(
_x81))))))) → minus
#(s(s(s(s(s(s(s(s(s(s(p(s(
_x121)))))))))))), s(s(s(s(s(p(s(
_x81)))))))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(_x81))))))) → minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(_x91)))))))) → minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
Problem 32: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), p(s(y))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251)))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x211)))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x211))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241)))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231)))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x151)))))))))))))), s(s(s(
_x51)))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x151))))))))))))))), s(s(p(s(
_x51))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(p(s(_x61)))))) | |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(p(s(_x51))))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x151)))))))))))))), s(s(s(
_x51)))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x151))))))))))))))), s(s(p(s(
_x51))))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(_x51)))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(p(s(_x51))))) | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(_x61))))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(p(s(_x61)))))) |
Problem 33: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251)))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x211)))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x211))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241)))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231)))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231))))))))))))))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), p(s(y))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x261)))))))))))))))))))))))), s(s(s(s(
_x61))))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x261))))))))))))))))))))))))), s(s(s(p(s(
_x61)))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) | |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) | |
Thus, the rule minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x261)))))))))))))))))))))))), s(s(s(s(
_x61))))) → minus
#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x261))))))))))))))))))))))))), s(s(s(p(s(
_x61)))))) is replaced by the following rules:
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(s(s(_x71)))))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(_x61))))) → minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) |
Problem 34: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(p(s(_x51))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251)))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x321)))))))))))))))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x321))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x281))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x281)))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271)))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x291)))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x291))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x211)))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x211))))))))))))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x301))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x301)))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241)))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231)))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), p(s(y))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(
x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x321)))))))))))))))))))))))))))))) → minus
#(p(s(
x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x321))))))))))))))))))))))))))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x321))))))))))))))))))))))))))))))) | |
minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x331)))))))))))))))))))))))))))))))) | |
Thus, the rule minus
#(s(
x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x321)))))))))))))))))))))))))))))) → minus
#(p(s(
x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x321))))))))))))))))))))))))))))))) is replaced by the following rules:
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x321)))))))))))))))))))))))))))))) → minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x321))))))))))))))))))))))))))))))) | minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x331))))))))))))))))))))))))))))))) → minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x331)))))))))))))))))))))))))))))))) |
Problem 35: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x401)))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x401))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x341)))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x341))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x381)))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x381))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x371))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x371)))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x361)))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x361))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x351))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x351)))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x421)))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x421))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x411))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x411)))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x431))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x431)))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x451))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x451)))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x391))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x391)))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251)))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) | | minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x441)))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x441))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x281))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x281)))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x431))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x431)))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271)))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x291)))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x291))))))))))))))))))))))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x331))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x331)))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x211)))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x211))))))))))))))))))))) |
minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x441)))))))))))))))))))))))))))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x441))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x321)))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x321))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x301))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x301)))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241)))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231)))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), p(s(y))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x431))))))))))))))))))))))))))))))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x431)))))))))))))))))))))))))))))))))))))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x431)))))))))))))))))))))))))))))))))))))))))) | |
minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x441))))))))))))))))))))))))))))))))))))))))))) | |
Thus, the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x431))))))))))))))))))))))))))))))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x431)))))))))))))))))))))))))))))))))))))))))) is replaced by the following rules:
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x431))))))))))))))))))))))))))))))))))))))))) → minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x431)))))))))))))))))))))))))))))))))))))))))) | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x441)))))))))))))))))))))))))))))))))))))))))) → minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x441))))))))))))))))))))))))))))))))))))))))))) |
Problem 36: ForwardNarrowing
Dependency Pair Problem
Dependency Pairs
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x401)))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x401))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x341)))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x341))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x381)))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x381))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(_x51)))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(p(s(_x51))))) |
minus#(s(s(s(s(s(_x61))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(p(s(_x61)))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261)))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(_x61))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(p(s(_x61)))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x481)))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x481))))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(_x51)))) | → | minus#(s(s(s(p(s(_x51))))), s(s(p(s(_x51))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x511))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x511)))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x551))))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x551)))))))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x371))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x371)))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x361)))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x361))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x351))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x351)))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241)))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x421)))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x421))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x411))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x411)))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x431))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x431)))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271))))))))))))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271)))))))))))))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x561)))))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x201))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x201)))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x501)))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x501))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x391))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x391)))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251)))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251))))))))))))))))))))))))) | | minus#(s(x), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x571))))))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(p(s(x)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x571)))))))))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x531))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x531)))))))))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(_x101))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(p(s(_x101)))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x461)))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x461))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221)))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x571))))))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x571)))))))))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x561)))))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x221))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x221)))))))))))))))))))))) |
minus#(s(s(s(s(_x51)))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(p(s(_x51))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(_x121))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x251))))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x251)))))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x441)))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x441))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(_x71)))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(p(s(_x71))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x291)))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x291))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x331))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x331)))))))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x191)))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x191))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x281))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x281)))))))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x271)))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x271))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x491))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x491)))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x181))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x181)))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(_x131)))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(p(s(_x131))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x171)))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x171))))))))))))))))) | | minus#(s(s(s(s(s(_x61))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(p(s(_x61)))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x521)))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x521))))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(_x121))))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(p(s(_x121)))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(_x111)))))))))), s(s(s(s(s(s(s(s(s(_x111)))))))))) | → | minus#(s(s(s(s(s(s(s(s(s(p(s(_x111))))))))))), s(s(s(s(s(s(s(s(p(s(_x111))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231))))))))))))))))))))), s(s(s(s(s(s(_x81))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231)))))))))))))))))))))), s(s(s(s(s(p(s(_x81)))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x211)))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x211))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x451))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x451)))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x321)))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x321))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x301))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x301)))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(_x141))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x141)))))))))))))), s(s(s(s(p(s(_x71))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x161))))))))))))))), s(s(s(s(s(_x71)))))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x161)))))))))))))))), s(s(s(s(p(s(_x71))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x471))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x471)))))))))))))))))))))))))))))))))))))))))))))) | | minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x541)))))))))))))))))))))))))))))))))))))))))))))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x541))))))))))))))))))))))))))))))))))))))))))))))))))))) |
minus#(s(s(s(s(s(s(s(s(_x91)))))))), s(s(s(s(s(s(s(_x91)))))))) | → | minus#(s(s(s(s(s(s(s(p(s(_x91))))))))), s(s(s(s(s(s(p(s(_x91))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x241))))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x241)))))))))))))))))))))))) |
minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x231)))))))))))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x231))))))))))))))))))))))) | | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(s(_x31))) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), s(p(s(_x31)))) |
minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x261)))))))))))))))))))))))), s(y)) | → | minus#(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x261))))))))))))))))))))))))), p(s(y))) | | minus#(s(s(s(s(s(s(s(_x81))))))), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(s(s(s(s(s(p(s(_x81)))))))), s(s(s(s(s(s(s(p(s(_x101)))))))))) |
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(_x101))))))))) | → | minus#(s(p(s(_x21))), s(s(s(s(s(s(s(p(s(_x101)))))))))) | | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(_x151)))))))))))))) | → | minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x151))))))))))))))) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, minus, s, p, div
Strategy
The right-hand side of the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x561)))))))))))))))))))))))))))))))))))))))))))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant Terms | Irrelevant Terms |
---|
minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x571)))))))))))))))))))))))))))))))))))))))))))))))))))))))) | |
minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) | |
Thus, the rule minus
#(s(s(
_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(
_x561)))))))))))))))))))))))))))))))))))))))))))))))))))))) → minus
#(s(p(s(
_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(
_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) is replaced by the following rules:
minus#(s(s(_x21)), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x571))))))))))))))))))))))))))))))))))))))))))))))))))))))) → minus#(s(p(s(_x21))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x571)))))))))))))))))))))))))))))))))))))))))))))))))))))))) | minus#(s(s(s(_x41))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(_x561)))))))))))))))))))))))))))))))))))))))))))))))))))))) → minus#(s(s(p(s(_x41)))), s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(p(s(_x561))))))))))))))))))))))))))))))))))))))))))))))))))))))) |
Problem 4: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
div#(plus(x, y), z) | → | div#(x, z) | | div#(plus(x, y), z) | → | div#(y, z) |
div#(s(x), s(y)) | → | div#(minus(x, y), s(y)) |
Rewrite Rules
minus(x, 0) | → | x | | minus(0, y) | → | 0 |
minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
p(s(s(x))) | → | s(p(s(x))) | | p(0) | → | s(s(0)) |
div(s(x), s(y)) | → | s(div(minus(x, y), s(y))) | | div(plus(x, y), z) | → | plus(div(x, z), div(y, z)) |
plus(0, y) | → | y | | plus(s(x), y) | → | s(plus(y, minus(s(x), s(0)))) |
Original Signature
Termination of terms over the following signature is verified: plus, minus, 0, s, p, div
Strategy
Polynomial Interpretation
- 0: 0
- div(x,y): 0
- div#(x,y): 2x
- minus(x,y): x
- p(x): 0
- plus(x,y): 2y + 2x + 1
- s(x): 2x
Improved Usable rules
p(s(s(x))) | → | s(p(s(x))) | | minus(x, plus(y, z)) | → | minus(minus(x, y), z) |
minus(0, y) | → | 0 | | minus(s(x), s(y)) | → | minus(p(s(x)), p(s(y))) |
p(0) | → | s(s(0)) | | minus(x, 0) | → | x |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
div#(plus(x, y), z) | → | div#(x, z) | | div#(plus(x, y), z) | → | div#(y, z) |