TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60027 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (81ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 6 was processed with processor DependencyGraph (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (1ms), PolynomialLinearRange4iUR (464ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (6537ms), DependencyGraph (0ms), ReductionPairSAT (531ms), DependencyGraph (2ms), SizeChangePrinciple (2705ms), ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (1ms), Propagation (1ms)].

The following open problems remain:



Open Dependency Pair Problem 5

Dependency Pairs

doublelist#(cons(x, xs))doublelist#(del(first(cons(x, xs)), cons(x, xs)))

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, false, true, del, doublelist, double, first, cons, eq, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

doublelist#(cons(x, xs))del#(first(cons(x, xs)), cons(x, xs))del#(x, cons(y, xs))if#(eq(x, y), x, y, xs)
doublelist#(cons(x, xs))doublelist#(del(first(cons(x, xs)), cons(x, xs)))del#(x, cons(y, xs))eq#(x, y)
doublelist#(cons(x, xs))double#(x)double#(s(x))double#(x)
eq#(s(x), s(y))eq#(x, y)doublelist#(cons(x, xs))first#(cons(x, xs))
if#(false, x, y, xs)del#(x, xs)

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, del, double, doublelist, first, nil, eq, cons

Strategy


The following SCCs where found

doublelist#(cons(x, xs)) → doublelist#(del(first(cons(x, xs)), cons(x, xs)))

del#(x, cons(y, xs)) → if#(eq(x, y), x, y, xs)if#(false, x, y, xs) → del#(x, xs)

double#(s(x)) → double#(x)

eq#(s(x), s(y)) → eq#(x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(x), s(y))eq#(x, y)

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, del, double, doublelist, first, nil, eq, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(x), s(y))eq#(x, y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

del#(x, cons(y, xs))if#(eq(x, y), x, y, xs)if#(false, x, y, xs)del#(x, xs)

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, del, double, doublelist, first, nil, eq, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

del#(x, cons(y, xs))if#(eq(x, y), x, y, xs)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if#(false, x, y, xs)del#(x, xs)

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, false, true, del, doublelist, double, first, cons, eq, nil

Strategy


There are no SCCs!

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

double#(s(x))double#(x)

Rewrite Rules

double(0)0double(s(x))s(s(double(x)))
del(x, nil)nildel(x, cons(y, xs))if(eq(x, y), x, y, xs)
if(true, x, y, xs)xsif(false, x, y, xs)cons(y, del(x, xs))
eq(0, 0)trueeq(0, s(y))false
eq(s(x), 0)falseeq(s(x), s(y))eq(x, y)
first(nil)0first(cons(x, xs))x
doublelist(nil)nildoublelist(cons(x, xs))cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Original Signature

Termination of terms over the following signature is verified: 0, s, if, true, false, del, double, doublelist, first, nil, eq, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

double#(s(x))double#(x)