TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (39ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor BackwardInstantiation (2ms).
 |    | – Problem 5 was processed with processor BackwardInstantiation (3ms).
 |    |    | – Problem 6 was processed with processor Propagation (2ms).
 |    |    |    | – Problem 7 remains open; application of the following processors failed [ForwardNarrowing (1ms), BackwardInstantiation (1ms), ForwardInstantiation (2ms), Propagation (1ms)].
 | – Problem 4 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

mod#(x, y)if_mod#(isZero(y), le(y, x), x, y, minus(x, y))if_mod#(false, true, x, y, z)mod#(z, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: minus, 0, s, le, mod, divByZeroError, false, true, if_mod, isZero


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)mod#(x, y)if_mod#(isZero(y), le(y, x), x, y, minus(x, y))
mod#(x, y)le#(y, x)if_mod#(false, true, x, y, z)mod#(z, y)
minus#(s(x), s(y))minus#(x, y)mod#(x, y)minus#(x, y)
mod#(x, y)isZero#(y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: 0, minus, le, s, mod, divByZeroError, true, false, if_mod, isZero

Strategy


The following SCCs where found

mod#(x, y) → if_mod#(isZero(y), le(y, x), x, y, minus(x, y))if_mod#(false, true, x, y, z) → mod#(z, y)

le#(s(x), s(y)) → le#(x, y)

minus#(s(x), s(y)) → minus#(x, y)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: 0, minus, le, s, mod, divByZeroError, true, false, if_mod, isZero

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

minus#(s(x), s(y))minus#(x, y)

Problem 3: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

mod#(x, y)if_mod#(isZero(y), le(y, x), x, y, minus(x, y))if_mod#(false, true, x, y, z)mod#(z, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: 0, minus, le, s, mod, divByZeroError, true, false, if_mod, isZero

Strategy


Instantiation

For all potential predecessors l → r of the rule mod#(x, y) → if_mod#(isZero(y), le(y, x), x, y, minus(x, y)) on dependency pair chains it holds that: Thus, mod#(x, y) → if_mod#(isZero(y), le(y, x), x, y, minus(x, y)) is replaced by instances determined through the above matching. These instances are:
mod#(_z, _y) → if_mod#(isZero(_y), le(_y, _z), _z, _y, minus(_z, _y))

Problem 5: BackwardInstantiation



Dependency Pair Problem

Dependency Pairs

if_mod#(false, true, x, y, z)mod#(z, y)mod#(_z, _y)if_mod#(isZero(_y), le(_y, _z), _z, _y, minus(_z, _y))

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: minus, 0, s, le, mod, divByZeroError, false, true, if_mod, isZero

Strategy


Instantiation

For all potential predecessors l → r of the rule mod#(_z, _y) → if_mod#(isZero(_y), le(_y, _z), _z, _y, minus(_z, _y)) on dependency pair chains it holds that: Thus, mod#(_z, _y) → if_mod#(isZero(_y), le(_y, _z), _z, _y, minus(_z, _y)) is replaced by instances determined through the above matching. These instances are:
mod#(z, y) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y))

Problem 6: Propagation



Dependency Pair Problem

Dependency Pairs

if_mod#(false, true, x, y, z)mod#(z, y)mod#(z, y)if_mod#(isZero(y), le(y, z), z, y, minus(z, y))

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: 0, minus, le, s, mod, divByZeroError, true, false, if_mod, isZero

Strategy


The dependency pairs if_mod#(false, true, x, y, z) → mod#(z, y) and mod#(z, y) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y)) are consolidated into the rule if_mod#(false, true, x, y, z) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y)) .

This is possible as

The dependency pairs if_mod#(false, true, x, y, z) → mod#(z, y) and mod#(z, y) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y)) are consolidated into the rule if_mod#(false, true, x, y, z) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y)) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
mod#(z, y) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y))if_mod#(false, true, x, y, z) → if_mod#(isZero(y), le(y, z), z, y, minus(z, y))
if_mod#(false, true, x, y, z) → mod#(z, y) 

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

le#(s(x), s(y))le#(x, y)

Rewrite Rules

le(0, y)truele(s(x), 0)false
le(s(x), s(y))le(x, y)minus(x, x)0
minus(x, 0)xminus(0, x)0
minus(s(x), s(y))minus(x, y)isZero(0)true
isZero(s(x))falsemod(x, y)if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z)divByZeroErrorif_mod(false, false, x, y, z)x
if_mod(false, true, x, y, z)mod(z, y)

Original Signature

Termination of terms over the following signature is verified: 0, minus, le, s, mod, divByZeroError, true, false, if_mod, isZero

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

le#(s(x), s(y))le#(x, y)