YES
The TRS could be proven terminating. The proof took 12539 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (435ms).
| Problem 2 was processed with processor PolynomialOrderingProcessor (8865ms).
| | Problem 10 was processed with processor PolynomialOrderingProcessor (1808ms).
| Problem 3 was processed with processor SubtermCriterion (0ms).
| Problem 4 was processed with processor SubtermCriterion (0ms).
| Problem 5 was processed with processor SubtermCriterion (1ms).
| Problem 6 was processed with processor SubtermCriterion (0ms).
| | Problem 9 was processed with processor SubtermCriterion (0ms).
| Problem 7 was processed with processor SubtermCriterion (3ms).
| Problem 8 was processed with processor SubtermCriterion (0ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
proper#(U11(X1, X2, X3)) | → | proper#(X3) | | top#(ok(X)) | → | top#(active(X)) |
active#(U11(X1, X2, X3)) | → | U11#(active(X1), X2, X3) | | top#(ok(X)) | → | active#(X) |
active#(U12(X1, X2, X3)) | → | U12#(active(X1), X2, X3) | | proper#(U11(X1, X2, X3)) | → | proper#(X2) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | proper#(plus(X1, X2)) | → | proper#(X1) |
proper#(plus(X1, X2)) | → | proper#(X2) | | top#(mark(X)) | → | proper#(X) |
proper#(plus(X1, X2)) | → | plus#(proper(X1), proper(X2)) | | plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) |
top#(mark(X)) | → | top#(proper(X)) | | proper#(U12(X1, X2, X3)) | → | proper#(X2) |
U12#(mark(X1), X2, X3) | → | U12#(X1, X2, X3) | | proper#(U12(X1, X2, X3)) | → | U12#(proper(X1), proper(X2), proper(X3)) |
active#(U12(tt, M, N)) | → | plus#(N, M) | | U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) |
active#(s(X)) | → | s#(active(X)) | | s#(ok(X)) | → | s#(X) |
proper#(U12(X1, X2, X3)) | → | proper#(X3) | | proper#(U11(X1, X2, X3)) | → | U11#(proper(X1), proper(X2), proper(X3)) |
proper#(U11(X1, X2, X3)) | → | proper#(X1) | | active#(U11(X1, X2, X3)) | → | active#(X1) |
s#(mark(X)) | → | s#(X) | | active#(U12(X1, X2, X3)) | → | active#(X1) |
active#(plus(X1, X2)) | → | plus#(X1, active(X2)) | | proper#(s(X)) | → | proper#(X) |
active#(U11(tt, M, N)) | → | U12#(tt, M, N) | | active#(plus(X1, X2)) | → | active#(X1) |
U12#(ok(X1), ok(X2), ok(X3)) | → | U12#(X1, X2, X3) | | active#(U12(tt, M, N)) | → | s#(plus(N, M)) |
active#(s(X)) | → | active#(X) | | active#(plus(X1, X2)) | → | plus#(active(X1), X2) |
proper#(s(X)) | → | s#(proper(X)) | | active#(plus(X1, X2)) | → | active#(X2) |
active#(plus(N, s(M))) | → | U11#(tt, M, N) | | U11#(ok(X1), ok(X2), ok(X3)) | → | U11#(X1, X2, X3) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | proper#(U12(X1, X2, X3)) | → | proper#(X1) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
The following SCCs where found
plus#(ok(X1), ok(X2)) → plus#(X1, X2) | plus#(X1, mark(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) |
active#(U11(X1, X2, X3)) → active#(X1) | active#(U12(X1, X2, X3)) → active#(X1) |
active#(plus(X1, X2)) → active#(X1) | active#(s(X)) → active#(X) |
active#(plus(X1, X2)) → active#(X2) |
U11#(mark(X1), X2, X3) → U11#(X1, X2, X3) | U11#(ok(X1), ok(X2), ok(X3)) → U11#(X1, X2, X3) |
U12#(ok(X1), ok(X2), ok(X3)) → U12#(X1, X2, X3) | U12#(mark(X1), X2, X3) → U12#(X1, X2, X3) |
s#(mark(X)) → s#(X) | s#(ok(X)) → s#(X) |
proper#(s(X)) → proper#(X) | proper#(U11(X1, X2, X3)) → proper#(X3) |
proper#(U11(X1, X2, X3)) → proper#(X2) | proper#(U12(X1, X2, X3)) → proper#(X2) |
proper#(plus(X1, X2)) → proper#(X1) | proper#(plus(X1, X2)) → proper#(X2) |
proper#(U12(X1, X2, X3)) → proper#(X3) | proper#(U12(X1, X2, X3)) → proper#(X1) |
proper#(U11(X1, X2, X3)) → proper#(X1) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
Problem 2: PolynomialOrderingProcessor
Dependency Pair Problem
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Polynomial Interpretation
- 0: 1
- U11(x,y,z): z + 5y + x + 4
- U12(x,y,z): z + 5y + x + 2
- active(x): x
- mark(x): x + 1
- ok(x): x
- plus(x,y): 5y + x
- proper(x): x
- s(x): x + 1
- top(x): -2
- top#(x): 4x + 1
- tt: -2
Improved Usable rules
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(s(X)) | → | s(active(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | s(ok(X)) | → | ok(s(X)) |
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | proper(tt) | → | ok(tt) |
U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) |
plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) | | s(mark(X)) | → | mark(s(X)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | active(plus(N, 0)) | → | mark(N) |
proper(0) | → | ok(0) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
top#(mark(X)) | → | top#(proper(X)) |
Problem 10: PolynomialOrderingProcessor
Dependency Pair Problem
Dependency Pairs
top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, ok, U12, mark, proper, top
Strategy
Polynomial Interpretation
- 0: 4
- U11(x,y,z): y + 2x
- U12(x,y,z): z + y + 2x
- active(x): x
- mark(x): 1
- ok(x): x + 1
- plus(x,y): x + 3
- proper(x): -2
- s(x): x + 3
- top(x): -2
- top#(x): 4x
- tt: 1
Improved Usable rules
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(s(X)) | → | s(active(X)) |
s(ok(X)) | → | ok(s(X)) | | plus(mark(X1), X2) | → | mark(plus(X1, X2)) |
active(U12(tt, M, N)) | → | mark(s(plus(N, M))) | | active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) |
U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) |
plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) | | s(mark(X)) | → | mark(s(X)) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
top#(ok(X)) | → | top#(active(X)) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) | | U11#(ok(X1), ok(X2), ok(X3)) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) | | U11#(ok(X1), ok(X2), ok(X3)) | → | U11#(X1, X2, X3) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(U11(X1, X2, X3)) | → | active#(X1) | | active#(U12(X1, X2, X3)) | → | active#(X1) |
active#(plus(X1, X2)) | → | active#(X1) | | active#(s(X)) | → | active#(X) |
active#(plus(X1, X2)) | → | active#(X2) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(U11(X1, X2, X3)) | → | active#(X1) | | active#(U12(X1, X2, X3)) | → | active#(X1) |
active#(plus(X1, X2)) | → | active#(X1) | | active#(s(X)) | → | active#(X) |
active#(plus(X1, X2)) | → | active#(X2) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(s(X)) | → | proper#(X) | | proper#(U11(X1, X2, X3)) | → | proper#(X3) |
proper#(U11(X1, X2, X3)) | → | proper#(X2) | | proper#(U12(X1, X2, X3)) | → | proper#(X2) |
proper#(plus(X1, X2)) | → | proper#(X1) | | proper#(plus(X1, X2)) | → | proper#(X2) |
proper#(U12(X1, X2, X3)) | → | proper#(X3) | | proper#(U12(X1, X2, X3)) | → | proper#(X1) |
proper#(U11(X1, X2, X3)) | → | proper#(X1) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(s(X)) | → | proper#(X) | | proper#(U11(X1, X2, X3)) | → | proper#(X3) |
proper#(U12(X1, X2, X3)) | → | proper#(X2) | | proper#(U11(X1, X2, X3)) | → | proper#(X2) |
proper#(plus(X1, X2)) | → | proper#(X1) | | proper#(plus(X1, X2)) | → | proper#(X2) |
proper#(U12(X1, X2, X3)) | → | proper#(X3) | | proper#(U12(X1, X2, X3)) | → | proper#(X1) |
proper#(U11(X1, X2, X3)) | → | proper#(X1) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(mark(X1), X2) | → | plus#(X1, X2) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, ok, U12, mark, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U12#(ok(X1), ok(X2), ok(X3)) | → | U12#(X1, X2, X3) | | U12#(mark(X1), X2, X3) | → | U12#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, M, N)) | → | mark(U12(tt, M, N)) | | active(U12(tt, M, N)) | → | mark(s(plus(N, M))) |
active(plus(N, 0)) | → | mark(N) | | active(plus(N, s(M))) | → | mark(U11(tt, M, N)) |
active(U11(X1, X2, X3)) | → | U11(active(X1), X2, X3) | | active(U12(X1, X2, X3)) | → | U12(active(X1), X2, X3) |
active(s(X)) | → | s(active(X)) | | active(plus(X1, X2)) | → | plus(active(X1), X2) |
active(plus(X1, X2)) | → | plus(X1, active(X2)) | | U11(mark(X1), X2, X3) | → | mark(U11(X1, X2, X3)) |
U12(mark(X1), X2, X3) | → | mark(U12(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
proper(U11(X1, X2, X3)) | → | U11(proper(X1), proper(X2), proper(X3)) | | proper(tt) | → | ok(tt) |
proper(U12(X1, X2, X3)) | → | U12(proper(X1), proper(X2), proper(X3)) | | proper(s(X)) | → | s(proper(X)) |
proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) | | proper(0) | → | ok(0) |
U11(ok(X1), ok(X2), ok(X3)) | → | ok(U11(X1, X2, X3)) | | U12(ok(X1), ok(X2), ok(X3)) | → | ok(U12(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
top(mark(X)) | → | top(proper(X)) | | top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, ok, proper, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U12#(ok(X1), ok(X2), ok(X3)) | → | U12#(X1, X2, X3) | | U12#(mark(X1), X2, X3) | → | U12#(X1, X2, X3) |