YES

The TRS could be proven terminating. The proof took 169 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (15ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (136ms).
 |    | – Problem 3 was processed with processor DependencyGraph (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U12#(tt, M, N)activate#(N)U12#(tt, M, N)activate#(M)
U12#(tt, M, N)plus#(activate(N), activate(M))U11#(tt, M, N)U12#(tt, activate(M), activate(N))
U11#(tt, M, N)activate#(M)U11#(tt, M, N)activate#(N)
plus#(N, s(M))U11#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, activate(M), activate(N))U12(tt, M, N)s(plus(activate(N), activate(M)))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, plus, 0, s, tt, U11, U12

Strategy


The following SCCs where found

U12#(tt, M, N) → plus#(activate(N), activate(M))U11#(tt, M, N) → U12#(tt, activate(M), activate(N))
plus#(N, s(M)) → U11#(tt, M, N)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

U12#(tt, M, N)plus#(activate(N), activate(M))U11#(tt, M, N)U12#(tt, activate(M), activate(N))
plus#(N, s(M))U11#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, activate(M), activate(N))U12(tt, M, N)s(plus(activate(N), activate(M)))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, plus, 0, s, tt, U11, U12

Strategy


Polynomial Interpretation

Improved Usable rules

activate(X)X

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U11#(tt, M, N)U12#(tt, activate(M), activate(N))

Problem 3: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U12#(tt, M, N)plus#(activate(N), activate(M))plus#(N, s(M))U11#(tt, M, N)

Rewrite Rules

U11(tt, M, N)U12(tt, activate(M), activate(N))U12(tt, M, N)s(plus(activate(N), activate(M)))
plus(N, 0)Nplus(N, s(M))U11(tt, M, N)
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, plus, 0, s, tt, U11, U12

Strategy


There are no SCCs!