YES

The TRS could be proven terminating. The proof took 41549 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (545ms).
 | – Problem 2 was processed with processor SubtermCriterion (5ms).
 |    | – Problem 4 was processed with processor DependencyGraph (7ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (225ms).
 |    | – Problem 5 was processed with processor DependencyGraph (20ms).
 |    |    | – Problem 6 was processed with processor PolynomialLinearRange4 (115ms).
 |    |    |    | – Problem 7 was processed with processor DependencyGraph (1ms).
 |    |    |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (29ms).
 |    |    |    |    |    | – Problem 9 was processed with processor PolynomialLinearRange4 (20ms).
 |    |    |    |    |    |    | – Problem 10 was processed with processor PolynomialLinearRange4 (68ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
a__plus#(N, 0)a__U31#(a__isNat(N), N)a__U31#(tt, N)mark#(N)
mark#(U31(X1, X2))a__U31#(mark(X1), X2)mark#(U41(X1, X2, X3))a__U41#(mark(X1), X2, X3)
a__isNat#(s(V1))a__isNat#(V1)mark#(U21(X))mark#(X)
a__U41#(tt, M, N)a__isNat#(N)a__isNat#(plus(V1, V2))a__U11#(a__isNat(V1), V2)
a__isNat#(s(V1))a__U21#(a__isNat(V1))mark#(plus(X1, X2))mark#(X2)
a__U11#(tt, V2)a__isNat#(V2)a__plus#(N, s(M))a__U41#(a__isNat(M), M, N)
mark#(U21(X))a__U21#(mark(X))a__U41#(tt, M, N)a__U42#(a__isNat(N), M, N)
a__isNat#(plus(V1, V2))a__isNat#(V1)a__plus#(N, s(M))a__isNat#(M)
mark#(U31(X1, X2))mark#(X1)mark#(s(X))mark#(X)
a__U42#(tt, M, N)mark#(N)a__U42#(tt, M, N)a__plus#(mark(N), mark(M))
mark#(U12(X))mark#(X)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
mark#(U12(X))a__U12#(mark(X))mark#(U42(X1, X2, X3))mark#(X1)
a__U11#(tt, V2)a__U12#(a__isNat(V2))mark#(plus(X1, X2))mark#(X1)
a__U42#(tt, M, N)mark#(M)mark#(U41(X1, X2, X3))mark#(X1)
mark#(U42(X1, X2, X3))a__U42#(mark(X1), X2, X3)a__plus#(N, 0)a__isNat#(N)
mark#(U11(X1, X2))a__U11#(mark(X1), X2)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


The following SCCs where found

mark#(U11(X1, X2)) → mark#(X1)mark#(U12(X)) → mark#(X)
mark#(plus(X1, X2)) → a__plus#(mark(X1), mark(X2))a__plus#(N, 0) → a__U31#(a__isNat(N), N)
a__U31#(tt, N) → mark#(N)mark#(U42(X1, X2, X3)) → mark#(X1)
mark#(U31(X1, X2)) → a__U31#(mark(X1), X2)mark#(U41(X1, X2, X3)) → a__U41#(mark(X1), X2, X3)
mark#(U21(X)) → mark#(X)mark#(plus(X1, X2)) → mark#(X1)
a__U42#(tt, M, N) → mark#(M)mark#(U41(X1, X2, X3)) → mark#(X1)
mark#(plus(X1, X2)) → mark#(X2)a__plus#(N, s(M)) → a__U41#(a__isNat(M), M, N)
mark#(U42(X1, X2, X3)) → a__U42#(mark(X1), X2, X3)a__U41#(tt, M, N) → a__U42#(a__isNat(N), M, N)
mark#(U31(X1, X2)) → mark#(X1)mark#(s(X)) → mark#(X)
a__U42#(tt, M, N) → mark#(N)a__U42#(tt, M, N) → a__plus#(mark(N), mark(M))

a__isNat#(plus(V1, V2)) → a__U11#(a__isNat(V1), V2)a__U11#(tt, V2) → a__isNat#(V2)
a__isNat#(plus(V1, V2)) → a__isNat#(V1)a__isNat#(s(V1)) → a__isNat#(V1)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

a__isNat#(plus(V1, V2))a__U11#(a__isNat(V1), V2)a__U11#(tt, V2)a__isNat#(V2)
a__isNat#(plus(V1, V2))a__isNat#(V1)a__isNat#(s(V1))a__isNat#(V1)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

a__isNat#(plus(V1, V2))a__U11#(a__isNat(V1), V2)a__isNat#(plus(V1, V2))a__isNat#(V1)
a__isNat#(s(V1))a__isNat#(V1)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U11#(tt, V2)a__isNat#(V2)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, U12, a__U12, U31, a__U11, a__U42, U21, a__U21

Strategy


There are no SCCs!

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U12(X))mark#(X)mark#(U11(X1, X2))mark#(X1)
a__plus#(N, 0)a__U31#(a__isNat(N), N)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
a__U31#(tt, N)mark#(N)mark#(U42(X1, X2, X3))mark#(X1)
mark#(U41(X1, X2, X3))a__U41#(mark(X1), X2, X3)mark#(U31(X1, X2))a__U31#(mark(X1), X2)
mark#(U21(X))mark#(X)mark#(plus(X1, X2))mark#(X1)
a__U42#(tt, M, N)mark#(M)mark#(plus(X1, X2))mark#(X2)
mark#(U41(X1, X2, X3))mark#(X1)a__plus#(N, s(M))a__U41#(a__isNat(M), M, N)
mark#(U42(X1, X2, X3))a__U42#(mark(X1), X2, X3)a__U41#(tt, M, N)a__U42#(a__isNat(N), M, N)
mark#(U31(X1, X2))mark#(X1)mark#(s(X))mark#(X)
a__U42#(tt, M, N)mark#(N)a__U42#(tt, M, N)a__plus#(mark(N), mark(M))

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


Polynomial Interpretation

Standard Usable rules

a__U11(tt, V2)a__U12(a__isNat(V2))mark(U11(X1, X2))a__U11(mark(X1), X2)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U12(X))a__U12(mark(X))
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__isNat(0)tt
a__plus(N, 0)a__U31(a__isNat(N), N)a__isNat(X)isNat(X)
mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)a__U12(X)U12(X)
a__U31(tt, N)mark(N)a__U42(X1, X2, X3)U42(X1, X2, X3)
a__U21(tt)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)a__U12(tt)tt
mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(0)0a__plus(X1, X2)plus(X1, X2)
a__U21(X)U21(X)mark(U21(X))a__U21(mark(X))
mark(U31(X1, X2))a__U31(mark(X1), X2)mark(isNat(X))a__isNat(X)
a__U41(X1, X2, X3)U41(X1, X2, X3)mark(s(X))s(mark(X))
a__isNat(s(V1))a__U21(a__isNat(V1))a__U31(X1, X2)U31(X1, X2)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U42(X1, X2, X3))mark#(X1)mark#(U41(X1, X2, X3))a__U41#(mark(X1), X2, X3)
mark#(U41(X1, X2, X3))mark#(X1)mark#(U42(X1, X2, X3))a__U42#(mark(X1), X2, X3)
a__plus#(N, s(M))a__U41#(a__isNat(M), M, N)mark#(s(X))mark#(X)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(U12(X))mark#(X)mark#(U11(X1, X2))mark#(X1)
a__plus#(N, 0)a__U31#(a__isNat(N), N)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
a__U31#(tt, N)mark#(N)mark#(U31(X1, X2))a__U31#(mark(X1), X2)
mark#(U21(X))mark#(X)mark#(plus(X1, X2))mark#(X1)
a__U42#(tt, M, N)mark#(M)mark#(plus(X1, X2))mark#(X2)
a__U41#(tt, M, N)a__U42#(a__isNat(N), M, N)mark#(U31(X1, X2))mark#(X1)
a__U42#(tt, M, N)mark#(N)a__U42#(tt, M, N)a__plus#(mark(N), mark(M))

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, U12, a__U12, U31, a__U11, a__U42, U21, a__U21

Strategy


The following SCCs where found

mark#(U11(X1, X2)) → mark#(X1)mark#(U12(X)) → mark#(X)
mark#(plus(X1, X2)) → mark#(X2)mark#(plus(X1, X2)) → a__plus#(mark(X1), mark(X2))
a__plus#(N, 0) → a__U31#(a__isNat(N), N)a__U31#(tt, N) → mark#(N)
mark#(U31(X1, X2)) → mark#(X1)mark#(U31(X1, X2)) → a__U31#(mark(X1), X2)
mark#(U21(X)) → mark#(X)mark#(plus(X1, X2)) → mark#(X1)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(U12(X))mark#(X)
mark#(plus(X1, X2))mark#(X2)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
a__plus#(N, 0)a__U31#(a__isNat(N), N)a__U31#(tt, N)mark#(N)
mark#(U31(X1, X2))mark#(X1)mark#(U31(X1, X2))a__U31#(mark(X1), X2)
mark#(U21(X))mark#(X)mark#(plus(X1, X2))mark#(X1)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, U12, a__U12, U31, a__U11, a__U42, U21, a__U21

Strategy


Polynomial Interpretation

Standard Usable rules

a__U11(tt, V2)a__U12(a__isNat(V2))mark(U11(X1, X2))a__U11(mark(X1), X2)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U12(X))a__U12(mark(X))
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__isNat(0)tt
a__plus(N, 0)a__U31(a__isNat(N), N)a__isNat(X)isNat(X)
mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)a__U12(X)U12(X)
a__U31(tt, N)mark(N)a__U42(X1, X2, X3)U42(X1, X2, X3)
a__U21(tt)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)a__U12(tt)tt
mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(0)0a__plus(X1, X2)plus(X1, X2)
a__U21(X)U21(X)mark(U21(X))a__U21(mark(X))
mark(U31(X1, X2))a__U31(mark(X1), X2)mark(isNat(X))a__isNat(X)
a__U41(X1, X2, X3)U41(X1, X2, X3)mark(s(X))s(mark(X))
a__isNat(s(V1))a__U21(a__isNat(V1))a__U31(X1, X2)U31(X1, X2)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(plus(X1, X2))mark#(X2)a__plus#(N, 0)a__U31#(a__isNat(N), N)
mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))mark#(U31(X1, X2))mark#(X1)
mark#(U31(X1, X2))a__U31#(mark(X1), X2)mark#(plus(X1, X2))mark#(X1)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(U12(X))mark#(X)mark#(U11(X1, X2))mark#(X1)
a__U31#(tt, N)mark#(N)mark#(U21(X))mark#(X)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


The following SCCs where found

mark#(U12(X)) → mark#(X)mark#(U11(X1, X2)) → mark#(X1)
mark#(U21(X)) → mark#(X)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U12(X))mark#(X)mark#(U11(X1, X2))mark#(X1)
mark#(U21(X))mark#(X)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U21(X))mark#(X)

Problem 9: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(U12(X))mark#(X)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, U12, a__U12, U31, a__U11, a__U42, U21, a__U21

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U11(X1, X2))mark#(X1)

Problem 10: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U12(X))mark#(X)

Rewrite Rules

a__U11(tt, V2)a__U12(a__isNat(V2))a__U12(tt)tt
a__U21(tt)tta__U31(tt, N)mark(N)
a__U41(tt, M, N)a__U42(a__isNat(N), M, N)a__U42(tt, M, N)s(a__plus(mark(N), mark(M)))
a__isNat(0)tta__isNat(plus(V1, V2))a__U11(a__isNat(V1), V2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__plus(N, 0)a__U31(a__isNat(N), N)
a__plus(N, s(M))a__U41(a__isNat(M), M, N)mark(U11(X1, X2))a__U11(mark(X1), X2)
mark(U12(X))a__U12(mark(X))mark(isNat(X))a__isNat(X)
mark(U21(X))a__U21(mark(X))mark(U31(X1, X2))a__U31(mark(X1), X2)
mark(U41(X1, X2, X3))a__U41(mark(X1), X2, X3)mark(U42(X1, X2, X3))a__U42(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U12(X)U12(X)
a__isNat(X)isNat(X)a__U21(X)U21(X)
a__U31(X1, X2)U31(X1, X2)a__U41(X1, X2, X3)U41(X1, X2, X3)
a__U42(X1, X2, X3)U42(X1, X2, X3)a__plus(X1, X2)plus(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, isNat, 0, U42, s, U41, tt, a__isNat, a__U41, U11, a__U31, a__U12, U12, a__U42, a__U11, U31, a__U21, U21

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U12(X))mark#(X)