YES
The TRS could be proven terminating. The proof took 26443 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (847ms).
| Problem 2 was processed with processor SubtermCriterion (0ms).
| | Problem 9 was processed with processor SubtermCriterion (0ms).
| | | Problem 13 was processed with processor PolynomialLinearRange4 (28ms).
| | | | Problem 15 was processed with processor PolynomialLinearRange4 (110ms).
| Problem 3 was processed with processor SubtermCriterion (1ms).
| | Problem 10 was processed with processor SubtermCriterion (1ms).
| Problem 4 was processed with processor SubtermCriterion (0ms).
| | Problem 11 was processed with processor SubtermCriterion (0ms).
| Problem 5 was processed with processor SubtermCriterion (0ms).
| Problem 6 was processed with processor SubtermCriterion (1ms).
| Problem 7 was processed with processor PolynomialLinearRange4 (291ms).
| | Problem 14 was processed with processor PolynomialLinearRange4 (299ms).
| | | Problem 16 was processed with processor PolynomialLinearRange4 (200ms).
| | | | Problem 17 was processed with processor PolynomialLinearRange4 (203ms).
| | | | | Problem 18 was processed with processor PolynomialLinearRange4 (197ms).
| | | | | | Problem 19 was processed with processor PolynomialLinearRange4 (185ms).
| | | | | | | Problem 20 was processed with processor PolynomialLinearRange4 (203ms).
| | | | | | | | Problem 21 was processed with processor PolynomialLinearRange4 (208ms).
| | | | | | | | | Problem 22 was processed with processor PolynomialLinearRange4 (171ms).
| | | | | | | | | | Problem 23 was processed with processor PolynomialLinearRange4 (135ms).
| | | | | | | | | | | Problem 24 was processed with processor ReductionPairSAT (2668ms).
| | | | | | | | | | | | Problem 25 was processed with processor DependencyGraph (2ms).
| | | | | | | | | | | | | Problem 26 was processed with processor ReductionPairSAT (52ms).
| Problem 8 was processed with processor SubtermCriterion (2ms).
| | Problem 12 was processed with processor SubtermCriterion (0ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
active#(plus(N, s(M))) | → | and#(isNat(M), isNat(N)) | | mark#(U11(X1, X2)) | → | mark#(X1) |
U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) | | U11#(mark(X1), X2) | → | U11#(X1, X2) |
mark#(s(X)) | → | s#(mark(X)) | | active#(U21(tt, M, N)) | → | s#(plus(N, M)) |
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | isNat#(active(X)) | → | isNat#(X) |
mark#(s(X)) | → | mark#(X) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
active#(U11(tt, N)) | → | mark#(N) | | active#(plus(N, 0)) | → | isNat#(N) |
active#(isNat(plus(V1, V2))) | → | isNat#(V2) | | mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) |
U11#(active(X1), X2) | → | U11#(X1, X2) | | U21#(X1, mark(X2), X3) | → | U21#(X1, X2, X3) |
active#(isNat(plus(V1, V2))) | → | and#(isNat(V1), isNat(V2)) | | mark#(and(X1, X2)) | → | and#(mark(X1), X2) |
active#(isNat(0)) | → | mark#(tt) | | active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) |
U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) | | and#(mark(X1), X2) | → | and#(X1, X2) |
mark#(plus(X1, X2)) | → | mark#(X1) | | U11#(X1, mark(X2)) | → | U11#(X1, X2) |
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | mark#(and(X1, X2)) | → | mark#(X1) |
U11#(X1, active(X2)) | → | U11#(X1, X2) | | U21#(active(X1), X2, X3) | → | U21#(X1, X2, X3) |
U21#(X1, active(X2), X3) | → | U21#(X1, X2, X3) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |
mark#(U21(X1, X2, X3)) | → | mark#(X1) | | plus#(mark(X1), X2) | → | plus#(X1, X2) |
plus#(active(X1), X2) | → | plus#(X1, X2) | | and#(active(X1), X2) | → | and#(X1, X2) |
mark#(isNat(X)) | → | active#(isNat(X)) | | active#(plus(N, s(M))) | → | isNat#(N) |
and#(X1, active(X2)) | → | and#(X1, X2) | | mark#(tt) | → | active#(tt) |
isNat#(mark(X)) | → | isNat#(X) | | active#(isNat(plus(V1, V2))) | → | isNat#(V1) |
mark#(isNat(X)) | → | isNat#(X) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(U11(X1, X2)) | → | U11#(mark(X1), X2) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
U21#(X1, X2, mark(X3)) | → | U21#(X1, X2, X3) | | active#(isNat(s(V1))) | → | isNat#(V1) |
active#(plus(N, s(M))) | → | U21#(and(isNat(M), isNat(N)), M, N) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
mark#(0) | → | active#(0) | | mark#(s(X)) | → | active#(s(mark(X))) |
mark#(plus(X1, X2)) | → | plus#(mark(X1), mark(X2)) | | active#(and(tt, X)) | → | mark#(X) |
mark#(U21(X1, X2, X3)) | → | U21#(mark(X1), X2, X3) | | s#(mark(X)) | → | s#(X) |
active#(U21(tt, M, N)) | → | plus#(N, M) | | active#(plus(N, 0)) | → | mark#(U11(isNat(N), N)) |
active#(plus(N, s(M))) | → | isNat#(M) | | s#(active(X)) | → | s#(X) |
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) | | active#(plus(N, 0)) | → | U11#(isNat(N), N) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
The following SCCs where found
U11#(X1, active(X2)) → U11#(X1, X2) | U11#(active(X1), X2) → U11#(X1, X2) |
U11#(mark(X1), X2) → U11#(X1, X2) | U11#(X1, mark(X2)) → U11#(X1, X2) |
s#(mark(X)) → s#(X) | s#(active(X)) → s#(X) |
isNat#(active(X)) → isNat#(X) | isNat#(mark(X)) → isNat#(X) |
mark#(U11(X1, X2)) → mark#(X1) | mark#(plus(X1, X2)) → active#(plus(mark(X1), mark(X2))) |
mark#(isNat(X)) → active#(isNat(X)) | mark#(s(X)) → active#(s(mark(X))) |
active#(isNat(plus(V1, V2))) → mark#(and(isNat(V1), isNat(V2))) | active#(and(tt, X)) → mark#(X) |
mark#(plus(X1, X2)) → mark#(X1) | active#(U21(tt, M, N)) → mark#(s(plus(N, M))) |
mark#(and(X1, X2)) → mark#(X1) | active#(isNat(s(V1))) → mark#(isNat(V1)) |
active#(plus(N, s(M))) → mark#(U21(and(isNat(M), isNat(N)), M, N)) | mark#(plus(X1, X2)) → mark#(X2) |
active#(plus(N, 0)) → mark#(U11(isNat(N), N)) | mark#(and(X1, X2)) → active#(and(mark(X1), X2)) |
mark#(U21(X1, X2, X3)) → mark#(X1) | mark#(s(X)) → mark#(X) |
mark#(U11(X1, X2)) → active#(U11(mark(X1), X2)) | active#(U11(tt, N)) → mark#(N) |
mark#(U21(X1, X2, X3)) → active#(U21(mark(X1), X2, X3)) |
and#(active(X1), X2) → and#(X1, X2) | and#(X1, active(X2)) → and#(X1, X2) |
and#(mark(X1), X2) → and#(X1, X2) | and#(X1, mark(X2)) → and#(X1, X2) |
plus#(X1, mark(X2)) → plus#(X1, X2) | plus#(X1, active(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) | plus#(active(X1), X2) → plus#(X1, X2) |
U21#(active(X1), X2, X3) → U21#(X1, X2, X3) | U21#(X1, mark(X2), X3) → U21#(X1, X2, X3) |
U21#(X1, active(X2), X3) → U21#(X1, X2, X3) | U21#(X1, X2, mark(X3)) → U21#(X1, X2, X3) |
U21#(X1, X2, active(X3)) → U21#(X1, X2, X3) | U21#(mark(X1), X2, X3) → U21#(X1, X2, X3) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U21#(active(X1), X2, X3) | → | U21#(X1, X2, X3) | | U21#(X1, mark(X2), X3) | → | U21#(X1, X2, X3) |
U21#(X1, active(X2), X3) | → | U21#(X1, X2, X3) | | U21#(X1, X2, mark(X3)) | → | U21#(X1, X2, X3) |
U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) | | U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U21#(active(X1), X2, X3) | → | U21#(X1, X2, X3) | | U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U21#(X1, active(X2), X3) | → | U21#(X1, X2, X3) | | U21#(X1, mark(X2), X3) | → | U21#(X1, X2, X3) |
U21#(X1, X2, mark(X3)) | → | U21#(X1, X2, X3) | | U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U21#(X1, mark(X2), X3) | → | U21#(X1, X2, X3) | | U21#(X1, active(X2), X3) | → | U21#(X1, X2, X3) |
Problem 13: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
U21#(X1, X2, mark(X3)) | → | U21#(X1, X2, X3) | | U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 0
- U21(x,y,z): 0
- U21#(x,y,z): z + 1
- active(x): 2x
- and(x,y): 0
- isNat(x): 0
- mark(x): 2x + 1
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U21#(X1, X2, mark(X3)) | → | U21#(X1, X2, X3) |
Problem 15: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 0
- U21(x,y,z): 0
- U21#(x,y,z): 2z + y + x + 1
- active(x): 2x + 1
- and(x,y): 0
- isNat(x): 0
- mark(x): 0
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U21#(X1, X2, active(X3)) | → | U21#(X1, X2, X3) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U11#(X1, active(X2)) | → | U11#(X1, X2) | | U11#(active(X1), X2) | → | U11#(X1, X2) |
U11#(mark(X1), X2) | → | U11#(X1, X2) | | U11#(X1, mark(X2)) | → | U11#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U11#(active(X1), X2) | → | U11#(X1, X2) | | U11#(mark(X1), X2) | → | U11#(X1, X2) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U11#(X1, active(X2)) | → | U11#(X1, X2) | | U11#(X1, mark(X2)) | → | U11#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U11#(X1, active(X2)) | → | U11#(X1, X2) | | U11#(X1, mark(X2)) | → | U11#(X1, X2) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(active(X1), X2) | → | and#(X1, X2) | | and#(X1, active(X2)) | → | and#(X1, X2) |
and#(mark(X1), X2) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(active(X1), X2) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |
Problem 11: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |
Problem 7: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(s(X)) | → | active#(s(mark(X))) | | mark#(isNat(X)) | → | active#(isNat(X)) |
active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) | | active#(and(tt, X)) | → | mark#(X) |
mark#(plus(X1, X2)) | → | mark#(X1) | | active#(isNat(s(V1))) | → | mark#(isNat(V1)) |
mark#(and(X1, X2)) | → | mark#(X1) | | active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) |
active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) | | mark#(plus(X1, X2)) | → | mark#(X2) |
active#(plus(N, 0)) | → | mark#(U11(isNat(N), N)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(U21(X1, X2, X3)) | → | mark#(X1) | | mark#(s(X)) | → | mark#(X) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 2
- U21(x,y,z): 2
- active(x): x
- active#(x): x
- and(x,y): 2
- isNat(x): 2
- mark(x): 2
- mark#(x): 2
- plus(x,y): 2
- s(x): 0
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(s(X)) | → | active#(s(mark(X))) |
Problem 14: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) |
active#(and(tt, X)) | → | mark#(X) | | mark#(plus(X1, X2)) | → | mark#(X1) |
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(and(X1, X2)) | → | mark#(X1) |
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
mark#(plus(X1, X2)) | → | mark#(X2) | | active#(plus(N, 0)) | → | mark#(U11(isNat(N), N)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | mark#(U21(X1, X2, X3)) | → | mark#(X1) |
mark#(s(X)) | → | mark#(X) | | mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
active#(U11(tt, N)) | → | mark#(N) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 1
- U11(x,y): y + 2x
- U21(x,y,z): 2z + y + 2x
- active(x): x
- active#(x): x
- and(x,y): y + 2x
- isNat(x): 0
- mark(x): x
- mark#(x): x
- plus(x,y): y + 2x
- s(x): x
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
active#(plus(N, 0)) | → | mark#(U11(isNat(N), N)) |
Problem 16: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) |
active#(and(tt, X)) | → | mark#(X) | | mark#(plus(X1, X2)) | → | mark#(X1) |
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(and(X1, X2)) | → | mark#(X1) |
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
mark#(plus(X1, X2)) | → | mark#(X2) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(U21(X1, X2, X3)) | → | mark#(X1) | | mark#(s(X)) | → | mark#(X) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): y + 2x
- U21(x,y,z): z + 2y + x + 2
- active(x): x
- active#(x): x
- and(x,y): y + 2x
- isNat(x): 0
- mark(x): x
- mark#(x): x
- plus(x,y): 2y + x + 2
- s(x): x
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(plus(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(U21(X1, X2, X3)) | → | mark#(X1) |
Problem 17: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) |
active#(and(tt, X)) | → | mark#(X) | | active#(isNat(s(V1))) | → | mark#(isNat(V1)) |
mark#(and(X1, X2)) | → | mark#(X1) | | active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) |
active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(s(X)) | → | mark#(X) | | mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 2y + x
- U21(x,y,z): 3z + 2y + 1
- active(x): x
- active#(x): 2x
- and(x,y): 2y + 2x
- isNat(x): x
- mark(x): x
- mark#(x): 2x
- plus(x,y): 2y + 3x + 1
- s(x): x
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
active#(isNat(plus(V1, V2))) | → | mark#(and(isNat(V1), isNat(V2))) |
Problem 18: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | active#(and(tt, X)) | → | mark#(X) |
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(and(X1, X2)) | → | mark#(X1) |
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | mark#(s(X)) | → | mark#(X) |
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
active#(U11(tt, N)) | → | mark#(N) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 2y + 2x
- U21(x,y,z): 2z + y + 1
- active(x): x
- active#(x): 2x
- and(x,y): 2y + 2x
- isNat(x): 0
- mark(x): x
- mark#(x): 2x
- plus(x,y): y + 2x
- s(x): x + 1
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
Problem 19: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | mark#(and(X1, X2)) | → | mark#(X1) |
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
mark#(isNat(X)) | → | active#(isNat(X)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
active#(U11(tt, N)) | → | mark#(N) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) | | active#(and(tt, X)) | → | mark#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 1
- U11(x,y): 2y + 2x
- U21(x,y,z): x
- active(x): x
- active#(x): x + 1
- and(x,y): 2y + x
- isNat(x): 0
- mark(x): x
- mark#(x): 2x + 1
- plus(x,y): 3x + 1
- s(x): 0
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | active#(plus(N, s(M))) | → | mark#(U21(and(isNat(M), isNat(N)), M, N)) |
Problem 20: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(and(X1, X2)) | → | mark#(X1) |
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
active#(and(tt, X)) | → | mark#(X) | | mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): y + x
- U21(x,y,z): 1
- active(x): x
- active#(x): 2x
- and(x,y): y + x
- isNat(x): 0
- mark(x): x
- mark#(x): 2x
- plus(x,y): 3y + 2x + 2
- s(x): 0
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | U11(mark(X1), X2) | → | U11(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
isNat(mark(X)) | → | isNat(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
active#(U21(tt, M, N)) | → | mark#(s(plus(N, M))) |
Problem 21: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | active#(isNat(s(V1))) | → | mark#(isNat(V1)) |
mark#(U11(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | active#(isNat(X)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
active#(and(tt, X)) | → | mark#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 1
- U11(x,y): 1
- U21(x,y,z): 0
- active(x): 1
- active#(x): 2x
- and(x,y): 1
- isNat(x): 1
- mark(x): 1
- mark#(x): 2
- plus(x,y): 0
- s(x): 0
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | s(active(X)) | → | s(X) |
active(isNat(s(V1))) | → | mark(isNat(V1)) | | mark(0) | → | active(0) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | plus(X1, active(X2)) | → | plus(X1, X2) |
U11(mark(X1), X2) | → | U11(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
active(and(tt, X)) | → | mark(X) | | U21(X1, active(X2), X3) | → | U21(X1, X2, X3) |
plus(active(X1), X2) | → | plus(X1, X2) | | and(mark(X1), X2) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(U21(X1, X2, X3)) | → | active#(U21(mark(X1), X2, X3)) |
Problem 22: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
active#(isNat(s(V1))) | → | mark#(isNat(V1)) | | mark#(and(X1, X2)) | → | mark#(X1) |
mark#(U11(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | active#(isNat(X)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | active#(and(tt, X)) | → | mark#(X) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) | | active#(U11(tt, N)) | → | mark#(N) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): y + 2x
- U21(x,y,z): 3z + y + 1
- active(x): x
- active#(x): 2x
- and(x,y): y + x
- isNat(x): x
- mark(x): x
- mark#(x): 2x
- plus(x,y): y + 3x
- s(x): x + 1
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
s(active(X)) | → | s(X) | | mark(0) | → | active(0) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | plus(X1, active(X2)) | → | plus(X1, X2) |
U11(mark(X1), X2) | → | U11(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | active(and(tt, X)) | → | mark(X) |
plus(active(X1), X2) | → | plus(X1, X2) | | and(mark(X1), X2) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
active#(isNat(s(V1))) | → | mark#(isNat(V1)) |
Problem 23: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(U11(X1, X2)) | → | mark#(X1) |
mark#(isNat(X)) | → | active#(isNat(X)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
active#(U11(tt, N)) | → | mark#(N) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
active#(and(tt, X)) | → | mark#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Polynomial Interpretation
- 0: 1
- U11(x,y): y + x + 1
- U21(x,y,z): 3z + 2y + 1
- active(x): x
- active#(x): 2x
- and(x,y): y + x
- isNat(x): 2x + 1
- mark(x): x
- mark#(x): 2x
- plus(x,y): 2y + 3x + 1
- s(x): x
- tt: 0
Standard Usable rules
mark(isNat(X)) | → | active(isNat(X)) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
mark(s(X)) | → | active(s(mark(X))) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) | → | and(X1, X2) | | U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) |
and(X1, mark(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
mark(and(X1, X2)) | → | active(and(mark(X1), X2)) | | U11(X1, active(X2)) | → | U11(X1, X2) |
active(isNat(0)) | → | mark(tt) | | U11(active(X1), X2) | → | U11(X1, X2) |
U11(X1, mark(X2)) | → | U11(X1, X2) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
s(active(X)) | → | s(X) | | mark(0) | → | active(0) |
active(U21(tt, M, N)) | → | mark(s(plus(N, M))) | | plus(X1, active(X2)) | → | plus(X1, X2) |
U11(mark(X1), X2) | → | U11(X1, X2) | | mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | isNat(active(X)) | → | isNat(X) |
U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) | | mark(tt) | → | active(tt) |
U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) | | active(U11(tt, N)) | → | mark(N) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | active(and(tt, X)) | → | mark(X) |
plus(active(X1), X2) | → | plus(X1, X2) | | and(mark(X1), X2) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(U11(X1, X2)) | → | mark#(X1) | | active#(U11(tt, N)) | → | mark#(N) |
Problem 24: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | active#(isNat(X)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | active#(and(tt, X)) | → | mark#(X) |
mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Function Precedence
active < s < active# < 0 = tt < U11 < plus = U21 = and < isNat = mark = mark#
Argument Filtering
isNat: collapses to 1
plus: 1 2
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
U11: collapses to 2
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
U21: 2 3
and: 1 2
Status
plus: lexicographic with permutation 1 → 1 2 → 2
0: multiset
tt: multiset
U21: lexicographic with permutation 2 → 2 3 → 1
and: lexicographic with permutation 1 → 1 2 → 2
Usable Rules
mark(isNat(X)) → active(isNat(X)) | active(plus(N, 0)) → mark(U11(isNat(N), N)) |
mark(s(X)) → active(s(mark(X))) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
U21(X1, X2, mark(X3)) → U21(X1, X2, X3) | active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2))) |
and(active(X1), X2) → and(X1, X2) | U21(mark(X1), X2, X3) → U21(X1, X2, X3) |
and(X1, mark(X2)) → and(X1, X2) | plus(mark(X1), X2) → plus(X1, X2) |
mark(and(X1, X2)) → active(and(mark(X1), X2)) | U11(X1, active(X2)) → U11(X1, X2) |
active(isNat(0)) → mark(tt) | U11(active(X1), X2) → U11(X1, X2) |
U11(X1, mark(X2)) → U11(X1, X2) | active(isNat(s(V1))) → mark(isNat(V1)) |
s(active(X)) → s(X) | mark(0) → active(0) |
active(U21(tt, M, N)) → mark(s(plus(N, M))) | plus(X1, active(X2)) → plus(X1, X2) |
U11(mark(X1), X2) → U11(X1, X2) | mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3)) |
plus(X1, mark(X2)) → plus(X1, X2) | active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) → active(U11(mark(X1), X2)) | isNat(active(X)) → isNat(X) |
U21(X1, X2, active(X3)) → U21(X1, X2, X3) | mark(tt) → active(tt) |
U21(X1, mark(X2), X3) → U21(X1, X2, X3) | active(U11(tt, N)) → mark(N) |
U21(X1, active(X2), X3) → U21(X1, X2, X3) | active(and(tt, X)) → mark(X) |
plus(active(X1), X2) → plus(X1, X2) | and(mark(X1), X2) → and(X1, X2) |
isNat(mark(X)) → isNat(X) | U21(active(X1), X2, X3) → U21(X1, X2, X3) |
s(mark(X)) → s(X) | and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
active#(and(tt, X)) → mark#(X) |
Problem 25: DependencyGraph
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | active#(isNat(X)) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | mark#(U11(X1, X2)) | → | active#(U11(mark(X1), X2)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
The following SCCs where found
mark#(and(X1, X2)) → mark#(X1) |
Problem 26: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Function Precedence
isNat = plus = 0 = s = tt = U11 = active = mark = mark# = U21 = and
Argument Filtering
isNat: all arguments are removed from isNat
plus: all arguments are removed from plus
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
U11: 1 2
active: collapses to 1
mark: all arguments are removed from mark
mark#: 1
U21: 1 3
and: 1
Status
isNat: multiset
plus: multiset
0: multiset
tt: multiset
U11: lexicographic with permutation 1 → 2 2 → 1
mark: multiset
mark#: lexicographic with permutation 1 → 1
U21: lexicographic with permutation 1 → 2 3 → 1
and: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(and(X1, X2)) → mark#(X1) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, active, U11, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Problem 12: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, active(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(plus(N, 0)) | → | mark(U11(isNat(N), N)) | | active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) |
mark(U11(X1, X2)) | → | active(U11(mark(X1), X2)) | | mark(tt) | → | active(tt) |
mark(U21(X1, X2, X3)) | → | active(U21(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(isNat(X)) | → | active(isNat(X)) | | mark(0) | → | active(0) |
U11(mark(X1), X2) | → | U11(X1, X2) | | U11(X1, mark(X2)) | → | U11(X1, X2) |
U11(active(X1), X2) | → | U11(X1, X2) | | U11(X1, active(X2)) | → | U11(X1, X2) |
U21(mark(X1), X2, X3) | → | U21(X1, X2, X3) | | U21(X1, mark(X2), X3) | → | U21(X1, X2, X3) |
U21(X1, X2, mark(X3)) | → | U21(X1, X2, X3) | | U21(active(X1), X2, X3) | → | U21(X1, X2, X3) |
U21(X1, active(X2), X3) | → | U21(X1, X2, X3) | | U21(X1, X2, active(X3)) | → | U21(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
Original Signature
Termination of terms over the following signature is verified: isNat, plus, 0, s, tt, U11, active, mark, U21, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |