YES

The TRS could be proven terminating. The proof took 41348 ms.

The following DP Processors were used


Problem 1 was processed with processor PolynomialLinearRange4 (279ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (203ms).
 |    | – Problem 3 was processed with processor DependencyGraph (14ms).
 |    |    | – Problem 4 was processed with processor PolynomialLinearRange4 (94ms).
 |    |    |    | – Problem 5 was processed with processor DependencyGraph (19ms).
 |    |    |    |    | – Problem 6 was processed with processor PolynomialLinearRange4 (107ms).
 |    |    |    |    |    | – Problem 7 was processed with processor DependencyGraph (1ms).

Problem 1: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
a__isNat#(plus(V1, V2))a__and#(a__isNat(V1), isNat(V2))a__U11#(tt, N)mark#(N)
a__U21#(tt, M, N)mark#(N)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
mark#(U21(X1, X2, X3))a__U21#(mark(X1), X2, X3)a__U21#(tt, M, N)a__plus#(mark(N), mark(M))
a__isNat#(s(V1))a__isNat#(V1)a__plus#(N, 0)a__U11#(a__isNat(N), N)
mark#(plus(X1, X2))mark#(X1)mark#(and(X1, X2))mark#(X1)
a__plus#(N, s(M))a__U21#(a__and(a__isNat(M), isNat(N)), M, N)mark#(plus(X1, X2))mark#(X2)
mark#(and(X1, X2))a__and#(mark(X1), X2)a__and#(tt, X)mark#(X)
a__plus#(N, 0)a__isNat#(N)a__isNat#(plus(V1, V2))a__isNat#(V1)
mark#(U11(X1, X2))a__U11#(mark(X1), X2)a__plus#(N, s(M))a__isNat#(M)
mark#(U21(X1, X2, X3))mark#(X1)mark#(s(X))mark#(X)
a__plus#(N, s(M))a__and#(a__isNat(M), isNat(N))a__U21#(tt, M, N)mark#(M)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, U21, a__U21

Strategy


Polynomial Interpretation

Standard Usable rules

mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(0)0
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)a__and(tt, X)mark(X)
a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))mark(isNat(X))a__isNat(X)
a__isNat(0)tta__U11(tt, N)mark(N)
a__isNat(X)isNat(X)a__plus(N, 0)a__U11(a__isNat(N), N)
a__U21(X1, X2, X3)U21(X1, X2, X3)mark(and(X1, X2))a__and(mark(X1), X2)
mark(s(X))s(mark(X))a__isNat(s(V1))a__isNat(V1)
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))mark(plus(X1, X2))a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__plus#(N, 0)a__U11#(a__isNat(N), N)a__plus#(N, 0)a__isNat#(N)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
a__isNat#(plus(V1, V2))a__and#(a__isNat(V1), isNat(V2))a__U11#(tt, N)mark#(N)
a__U21#(tt, M, N)mark#(N)mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))
mark#(U21(X1, X2, X3))a__U21#(mark(X1), X2, X3)a__U21#(tt, M, N)a__plus#(mark(N), mark(M))
a__isNat#(s(V1))a__isNat#(V1)mark#(plus(X1, X2))mark#(X1)
mark#(and(X1, X2))mark#(X1)a__plus#(N, s(M))a__U21#(a__and(a__isNat(M), isNat(N)), M, N)
mark#(and(X1, X2))a__and#(mark(X1), X2)mark#(plus(X1, X2))mark#(X2)
a__and#(tt, X)mark#(X)mark#(U11(X1, X2))a__U11#(mark(X1), X2)
a__isNat#(plus(V1, V2))a__isNat#(V1)mark#(U21(X1, X2, X3))mark#(X1)
a__plus#(N, s(M))a__isNat#(M)mark#(s(X))mark#(X)
a__plus#(N, s(M))a__and#(a__isNat(M), isNat(N))a__U21#(tt, M, N)mark#(M)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, a__U21, U21

Strategy


Polynomial Interpretation

Standard Usable rules

mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(0)0
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)a__and(tt, X)mark(X)
a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))mark(isNat(X))a__isNat(X)
a__isNat(0)tta__U11(tt, N)mark(N)
a__isNat(X)isNat(X)a__plus(N, 0)a__U11(a__isNat(N), N)
a__U21(X1, X2, X3)U21(X1, X2, X3)mark(and(X1, X2))a__and(mark(X1), X2)
mark(s(X))s(mark(X))a__isNat(s(V1))a__isNat(V1)
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))mark(plus(X1, X2))a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U11(X1, X2))mark#(X1)a__U11#(tt, N)mark#(N)
a__U21#(tt, M, N)mark#(N)a__U21#(tt, M, N)a__plus#(mark(N), mark(M))
a__plus#(N, s(M))a__isNat#(M)mark#(U21(X1, X2, X3))mark#(X1)
mark#(s(X))mark#(X)a__plus#(N, s(M))a__and#(a__isNat(M), isNat(N))
a__U21#(tt, M, N)mark#(M)

Problem 3: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(isNat(X))a__isNat#(X)a__isNat#(plus(V1, V2))a__and#(a__isNat(V1), isNat(V2))
mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))mark#(U21(X1, X2, X3))a__U21#(mark(X1), X2, X3)
a__isNat#(s(V1))a__isNat#(V1)mark#(plus(X1, X2))mark#(X1)
mark#(and(X1, X2))mark#(X1)a__plus#(N, s(M))a__U21#(a__and(a__isNat(M), isNat(N)), M, N)
mark#(and(X1, X2))a__and#(mark(X1), X2)mark#(plus(X1, X2))mark#(X2)
a__and#(tt, X)mark#(X)mark#(U11(X1, X2))a__U11#(mark(X1), X2)
a__isNat#(plus(V1, V2))a__isNat#(V1)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, U21, a__U21

Strategy


The following SCCs where found

mark#(and(X1, X2)) → mark#(X1)a__isNat#(plus(V1, V2)) → a__and#(a__isNat(V1), isNat(V2))
mark#(isNat(X)) → a__isNat#(X)mark#(plus(X1, X2)) → mark#(X2)
mark#(and(X1, X2)) → a__and#(mark(X1), X2)a__and#(tt, X) → mark#(X)
a__isNat#(plus(V1, V2)) → a__isNat#(V1)a__isNat#(s(V1)) → a__isNat#(V1)
mark#(plus(X1, X2)) → mark#(X1)

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(and(X1, X2))mark#(X1)a__isNat#(plus(V1, V2))a__and#(a__isNat(V1), isNat(V2))
mark#(isNat(X))a__isNat#(X)mark#(plus(X1, X2))mark#(X2)
mark#(and(X1, X2))a__and#(mark(X1), X2)a__and#(tt, X)mark#(X)
a__isNat#(plus(V1, V2))a__isNat#(V1)a__isNat#(s(V1))a__isNat#(V1)
mark#(plus(X1, X2))mark#(X1)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, U21, a__U21

Strategy


Polynomial Interpretation

Standard Usable rules

mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(0)0
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__and(tt, X)mark(X)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))mark(isNat(X))a__isNat(X)
a__isNat(0)tta__U11(tt, N)mark(N)
a__isNat(X)isNat(X)a__plus(N, 0)a__U11(a__isNat(N), N)
a__U21(X1, X2, X3)U21(X1, X2, X3)mark(and(X1, X2))a__and(mark(X1), X2)
mark(s(X))s(mark(X))a__isNat(s(V1))a__isNat(V1)
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))mark(plus(X1, X2))a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__isNat#(plus(V1, V2))a__and#(a__isNat(V1), isNat(V2))mark#(plus(X1, X2))mark#(X2)
a__isNat#(plus(V1, V2))a__isNat#(V1)a__isNat#(s(V1))a__isNat#(V1)
mark#(plus(X1, X2))mark#(X1)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(and(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
mark#(and(X1, X2))a__and#(mark(X1), X2)a__and#(tt, X)mark#(X)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, a__U21, U21

Strategy


The following SCCs where found

mark#(and(X1, X2)) → mark#(X1)mark#(and(X1, X2)) → a__and#(mark(X1), X2)
a__and#(tt, X) → mark#(X)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(and(X1, X2))mark#(X1)mark#(and(X1, X2))a__and#(mark(X1), X2)
a__and#(tt, X)mark#(X)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, a__U21, U21

Strategy


Polynomial Interpretation

Standard Usable rules

mark(tt)tta__U11(X1, X2)U11(X1, X2)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(0)0
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__and(tt, X)mark(X)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))mark(isNat(X))a__isNat(X)
a__isNat(0)tta__isNat(X)isNat(X)
a__U11(tt, N)mark(N)a__plus(N, 0)a__U11(a__isNat(N), N)
a__U21(X1, X2, X3)U21(X1, X2, X3)mark(and(X1, X2))a__and(mark(X1), X2)
mark(s(X))s(mark(X))a__isNat(s(V1))a__isNat(V1)
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))mark(plus(X1, X2))a__plus(mark(X1), mark(X2))
mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(and(X1, X2))mark#(X1)mark#(and(X1, X2))a__and#(mark(X1), X2)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__and#(tt, X)mark#(X)

Rewrite Rules

a__U11(tt, N)mark(N)a__U21(tt, M, N)s(a__plus(mark(N), mark(M)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(plus(V1, V2))a__and(a__isNat(V1), isNat(V2))a__isNat(s(V1))a__isNat(V1)
a__plus(N, 0)a__U11(a__isNat(N), N)a__plus(N, s(M))a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(U21(X1, X2, X3))a__U21(mark(X1), X2, X3)
mark(plus(X1, X2))a__plus(mark(X1), mark(X2))mark(and(X1, X2))a__and(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(tt)tt
mark(s(X))s(mark(X))mark(0)0
a__U11(X1, X2)U11(X1, X2)a__U21(X1, X2, X3)U21(X1, X2, X3)
a__plus(X1, X2)plus(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__plus, mark, and, a__and, isNat, 0, s, tt, a__isNat, U11, a__U11, U21, a__U21

Strategy


There are no SCCs!