TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (2210ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (3ms).
 | – Problem 5 was processed with processor SubtermCriterion (2ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (5001ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (15000ms), DependencyGraph (16ms), ReductionPairSAT (6014ms), DependencyGraph (42ms), ReductionPairSAT (5910ms), DependencyGraph (4ms), SizeChangePrinciple (timeout)].
 | – Problem 9 was processed with processor SubtermCriterion (1ms).
 | – Problem 10 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (93ms).

The following open problems remain:



Open Dependency Pair Problem 8

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(plus(N, s(M)))and#(isNat(M), isNat(N))top#(ok(X))top#(active(X))
proper#(U11(X1, X2))proper#(X1)U21#(ok(X1), ok(X2), ok(X3))U21#(X1, X2, X3)
U11#(ok(X1), ok(X2))U11#(X1, X2)U11#(mark(X1), X2)U11#(X1, X2)
proper#(U11(X1, X2))U11#(proper(X1), proper(X2))proper#(and(X1, X2))and#(proper(X1), proper(X2))
active#(U21(tt, M, N))s#(plus(N, M))proper#(U11(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X2)plus#(X1, mark(X2))plus#(X1, X2)
proper#(plus(X1, X2))proper#(X1)active#(plus(N, 0))isNat#(N)
active#(U11(X1, X2))active#(X1)top#(mark(X))proper#(X)
proper#(plus(X1, X2))plus#(proper(X1), proper(X2))active#(isNat(plus(V1, V2)))isNat#(V2)
top#(mark(X))top#(proper(X))active#(isNat(plus(V1, V2)))and#(isNat(V1), isNat(V2))
U21#(mark(X1), X2, X3)U21#(X1, X2, X3)active#(U21(X1, X2, X3))U21#(active(X1), X2, X3)
isNat#(ok(X))isNat#(X)and#(mark(X1), X2)and#(X1, X2)
active#(U21(X1, X2, X3))active#(X1)proper#(s(X))proper#(X)
active#(plus(X1, X2))active#(X1)active#(plus(X1, X2))active#(X2)
plus#(mark(X1), X2)plus#(X1, X2)active#(plus(N, s(M)))isNat#(N)
proper#(U21(X1, X2, X3))proper#(X3)and#(ok(X1), ok(X2))and#(X1, X2)
active#(isNat(plus(V1, V2)))isNat#(V1)proper#(and(X1, X2))proper#(X1)
top#(ok(X))active#(X)active#(and(X1, X2))and#(active(X1), X2)
proper#(U21(X1, X2, X3))proper#(X1)proper#(isNat(X))isNat#(proper(X))
proper#(plus(X1, X2))proper#(X2)active#(isNat(s(V1)))isNat#(V1)
active#(plus(N, s(M)))U21#(and(isNat(M), isNat(N)), M, N)plus#(ok(X1), ok(X2))plus#(X1, X2)
proper#(isNat(X))proper#(X)active#(U11(X1, X2))U11#(active(X1), X2)
active#(s(X))s#(active(X))proper#(U21(X1, X2, X3))U21#(proper(X1), proper(X2), proper(X3))
s#(ok(X))s#(X)s#(mark(X))s#(X)
active#(plus(X1, X2))plus#(X1, active(X2))active#(U21(tt, M, N))plus#(N, M)
active#(plus(N, s(M)))isNat#(M)active#(s(X))active#(X)
active#(plus(X1, X2))plus#(active(X1), X2)proper#(s(X))s#(proper(X))
proper#(U21(X1, X2, X3))proper#(X2)active#(and(X1, X2))active#(X1)
active#(plus(N, 0))U11#(isNat(N), N)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


The following SCCs where found

plus#(ok(X1), ok(X2)) → plus#(X1, X2)plus#(X1, mark(X2)) → plus#(X1, X2)
plus#(mark(X1), X2) → plus#(X1, X2)

U21#(ok(X1), ok(X2), ok(X3)) → U21#(X1, X2, X3)U21#(mark(X1), X2, X3) → U21#(X1, X2, X3)

proper#(s(X)) → proper#(X)proper#(isNat(X)) → proper#(X)
proper#(U11(X1, X2)) → proper#(X2)proper#(and(X1, X2)) → proper#(X2)
proper#(U11(X1, X2)) → proper#(X1)proper#(U21(X1, X2, X3)) → proper#(X1)
proper#(U21(X1, X2, X3)) → proper#(X3)proper#(U21(X1, X2, X3)) → proper#(X2)
proper#(plus(X1, X2)) → proper#(X1)proper#(plus(X1, X2)) → proper#(X2)
proper#(and(X1, X2)) → proper#(X1)

active#(plus(X1, X2)) → active#(X1)active#(s(X)) → active#(X)
active#(plus(X1, X2)) → active#(X2)active#(and(X1, X2)) → active#(X1)
active#(U11(X1, X2)) → active#(X1)active#(U21(X1, X2, X3)) → active#(X1)

U11#(ok(X1), ok(X2)) → U11#(X1, X2)U11#(mark(X1), X2) → U11#(X1, X2)

isNat#(ok(X)) → isNat#(X)

and#(ok(X1), ok(X2)) → and#(X1, X2)and#(mark(X1), X2) → and#(X1, X2)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U21#(ok(X1), ok(X2), ok(X3))U21#(X1, X2, X3)U21#(mark(X1), X2, X3)U21#(X1, X2, X3)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U21#(ok(X1), ok(X2), ok(X3))U21#(X1, X2, X3)U21#(mark(X1), X2, X3)U21#(X1, X2, X3)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U11#(ok(X1), ok(X2))U11#(X1, X2)U11#(mark(X1), X2)U11#(X1, X2)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U11#(ok(X1), ok(X2))U11#(X1, X2)U11#(mark(X1), X2)U11#(X1, X2)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

isNat#(ok(X))isNat#(X)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

isNat#(ok(X))isNat#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(plus(X1, X2))active#(X1)active#(s(X))active#(X)
active#(plus(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)
active#(U11(X1, X2))active#(X1)active#(U21(X1, X2, X3))active#(X1)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(plus(X1, X2))active#(X1)active#(s(X))active#(X)
active#(plus(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)
active#(U11(X1, X2))active#(X1)active#(U21(X1, X2, X3))active#(X1)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(isNat(X))proper#(X)
proper#(U11(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X2)
proper#(U11(X1, X2))proper#(X1)proper#(U21(X1, X2, X3))proper#(X1)
proper#(U21(X1, X2, X3))proper#(X3)proper#(U21(X1, X2, X3))proper#(X2)
proper#(plus(X1, X2))proper#(X1)proper#(plus(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X1)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(isNat(X))proper#(X)
proper#(U11(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X2)
proper#(U11(X1, X2))proper#(X1)proper#(U21(X1, X2, X3))proper#(X1)
proper#(U21(X1, X2, X3))proper#(X3)proper#(U21(X1, X2, X3))proper#(X2)
proper#(plus(X1, X2))proper#(X1)proper#(plus(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X1)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(X1, mark(X2))plus#(X1, X2)
plus#(mark(X1), X2)plus#(X1, X2)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(mark(X1), X2)plus#(X1, X2)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

plus#(X1, mark(X2))plus#(X1, X2)

Rewrite Rules

active(U11(tt, N))mark(N)active(U21(tt, M, N))mark(s(plus(N, M)))
active(and(tt, X))mark(X)active(isNat(0))mark(tt)
active(isNat(plus(V1, V2)))mark(and(isNat(V1), isNat(V2)))active(isNat(s(V1)))mark(isNat(V1))
active(plus(N, 0))mark(U11(isNat(N), N))active(plus(N, s(M)))mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2))U11(active(X1), X2)active(U21(X1, X2, X3))U21(active(X1), X2, X3)
active(s(X))s(active(X))active(plus(X1, X2))plus(active(X1), X2)
active(plus(X1, X2))plus(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
U11(mark(X1), X2)mark(U11(X1, X2))U21(mark(X1), X2, X3)mark(U21(X1, X2, X3))
s(mark(X))mark(s(X))plus(mark(X1), X2)mark(plus(X1, X2))
plus(X1, mark(X2))mark(plus(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
proper(U11(X1, X2))U11(proper(X1), proper(X2))proper(tt)ok(tt)
proper(U21(X1, X2, X3))U21(proper(X1), proper(X2), proper(X3))proper(s(X))s(proper(X))
proper(plus(X1, X2))plus(proper(X1), proper(X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(isNat(X))isNat(proper(X))proper(0)ok(0)
U11(ok(X1), ok(X2))ok(U11(X1, X2))U21(ok(X1), ok(X2), ok(X3))ok(U21(X1, X2, X3))
s(ok(X))ok(s(X))plus(ok(X1), ok(X2))ok(plus(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))isNat(ok(X))ok(isNat(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, active, U11, ok, proper, U21, top

Strategy


Function Precedence

mark < plus = and = isNat = 0 = s = tt = U11 = plus# = active = ok = proper = U21 = top

Argument Filtering

plus: all arguments are removed from plus
mark: 1
and: 1 2
isNat: all arguments are removed from isNat
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U11: all arguments are removed from U11
plus#: collapses to 2
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: all arguments are removed from proper
U21: 2 3
top: all arguments are removed from top

Status

plus: multiset
mark: multiset
and: lexicographic with permutation 1 → 2 2 → 1
isNat: multiset
0: multiset
s: multiset
tt: multiset
U11: multiset
active: multiset
ok: multiset
proper: multiset
U21: lexicographic with permutation 2 → 1 3 → 2
top: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

plus#(X1, mark(X2)) → plus#(X1, X2)