TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60013 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (18458ms).
| Problem 2 was processed with processor SubtermCriterion (2ms).
| Problem 3 was processed with processor SubtermCriterion (2ms).
| | Problem 15 remains open; application of the following processors failed [DependencyGraph (5ms), PolynomialLinearRange4iUR (18ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (26ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (8ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (13ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (11ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (8ms)].
| Problem 4 was processed with processor SubtermCriterion (1ms).
| | Problem 16 was processed with processor PolynomialLinearRange4iUR (68ms).
| | | Problem 22 was processed with processor PolynomialLinearRange4iUR (72ms).
| | | | Problem 26 was processed with processor PolynomialLinearRange4iUR (64ms).
| | | | | Problem 29 remains open; application of the following processors failed [DependencyGraph (2ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (2ms), PolynomialLinearRange4iUR (18ms), DependencyGraph (2ms), PolynomialLinearRange8NegiUR (19ms)].
| Problem 5 was processed with processor SubtermCriterion (4ms).
| Problem 6 was processed with processor SubtermCriterion (1ms).
| Problem 7 was processed with processor SubtermCriterion (1ms).
| | Problem 17 was processed with processor PolynomialLinearRange4iUR (89ms).
| Problem 8 was processed with processor SubtermCriterion (1ms).
| | Problem 18 was processed with processor PolynomialLinearRange4iUR (49ms).
| Problem 9 was processed with processor SubtermCriterion (3ms).
| Problem 10 was processed with processor SubtermCriterion (2ms).
| | Problem 19 was processed with processor PolynomialLinearRange4iUR (112ms).
| | | Problem 23 was processed with processor PolynomialLinearRange4iUR (19ms).
| Problem 11 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2286ms), PolynomialLinearRange4iUR (1251ms), DependencyGraph (2198ms), PolynomialLinearRange4iUR (1666ms), DependencyGraph (2209ms), PolynomialLinearRange4iUR (2503ms), DependencyGraph (2294ms), PolynomialLinearRange4iUR (2534ms), DependencyGraph (2205ms), PolynomialLinearRange4iUR (2500ms), DependencyGraph (2203ms), PolynomialLinearRange4iUR (3369ms), DependencyGraph (2299ms), PolynomialLinearRange8NegiUR (10000ms), DependencyGraph (timeout)].
| Problem 12 was processed with processor SubtermCriterion (2ms).
| | Problem 20 was processed with processor PolynomialLinearRange4iUR (49ms).
| | | Problem 25 was processed with processor PolynomialLinearRange4iUR (27ms).
| | | | Problem 27 was processed with processor PolynomialLinearRange4iUR (50ms).
| | | | | Problem 28 was processed with processor PolynomialLinearRange4iUR (17ms).
| Problem 13 was processed with processor SubtermCriterion (4ms).
| | Problem 21 was processed with processor PolynomialLinearRange4iUR (26ms).
| | | Problem 24 was processed with processor PolynomialLinearRange4iUR (24ms).
| Problem 14 was processed with processor SubtermCriterion (1ms).
The following open problems remain:
Open Dependency Pair Problem 11
Dependency Pairs
active#(isNatKind(0)) | → | mark#(tt) | | active#(U21(tt, V1)) | → | mark#(U22(isNat(V1))) |
mark#(isNat(X)) | → | active#(isNat(X)) | | mark#(isNatKind(X)) | → | active#(isNatKind(X)) |
mark#(tt) | → | active#(tt) | | mark#(U21(X1, X2)) | → | mark#(X1) |
active#(U41(tt, M, N)) | → | mark#(s(plus(N, M))) | | mark#(U11(X1, X2, X3)) | → | active#(U11(mark(X1), X2, X3)) |
active#(U22(tt)) | → | mark#(tt) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(U21(X1, X2)) | → | active#(U21(mark(X1), X2)) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(U31(X1, X2)) | → | mark#(X1) | | mark#(s(X)) | → | mark#(X) |
mark#(U13(X)) | → | active#(U13(mark(X))) | | active#(isNatKind(s(V1))) | → | mark#(isNatKind(V1)) |
active#(U13(tt)) | → | mark#(tt) | | mark#(U31(X1, X2)) | → | active#(U31(mark(X1), X2)) |
mark#(U12(X1, X2)) | → | mark#(X1) | | active#(plus(N, 0)) | → | mark#(U31(and(isNat(N), isNatKind(N)), N)) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(0) | → | active#(0) |
mark#(s(X)) | → | active#(s(mark(X))) | | active#(isNat(0)) | → | mark#(tt) |
active#(isNatKind(plus(V1, V2))) | → | mark#(and(isNatKind(V1), isNatKind(V2))) | | active#(U11(tt, V1, V2)) | → | mark#(U12(isNat(V1), V2)) |
active#(and(tt, X)) | → | mark#(X) | | active#(isNat(s(V1))) | → | mark#(U21(isNatKind(V1), V1)) |
mark#(plus(X1, X2)) | → | mark#(X1) | | mark#(and(X1, X2)) | → | mark#(X1) |
mark#(U22(X)) | → | mark#(X) | | active#(plus(N, s(M))) | → | mark#(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark#(U41(X1, X2, X3)) | → | mark#(X1) | | mark#(U41(X1, X2, X3)) | → | active#(U41(mark(X1), X2, X3)) |
mark#(U12(X1, X2)) | → | active#(U12(mark(X1), X2)) | | mark#(U22(X)) | → | active#(U22(mark(X))) |
active#(U31(tt, N)) | → | mark#(N) | | active#(U12(tt, V2)) | → | mark#(U13(isNat(V2))) |
active#(isNat(plus(V1, V2))) | → | mark#(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) | | mark#(U11(X1, X2, X3)) | → | mark#(X1) |
mark#(U13(X)) | → | mark#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Open Dependency Pair Problem 29
Dependency Pairs
U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Open Dependency Pair Problem 15
Dependency Pairs
U21#(X1, mark(X2)) | → | U21#(X1, X2) | | U21#(X1, active(X2)) | → | U21#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
active#(isNatKind(0)) | → | mark#(tt) | | U12#(active(X1), X2) | → | U12#(X1, X2) |
active#(isNat(plus(V1, V2))) | → | U11#(and(isNatKind(V1), isNatKind(V2)), V1, V2) | | active#(isNatKind(plus(V1, V2))) | → | isNatKind#(V1) |
mark#(U11(X1, X2, X3)) | → | U11#(mark(X1), X2, X3) | | active#(U22(tt)) | → | mark#(tt) |
active#(plus(N, 0)) | → | and#(isNat(N), isNatKind(N)) | | active#(U12(tt, V2)) | → | isNat#(V2) |
isNat#(active(X)) | → | isNat#(X) | | U21#(X1, active(X2)) | → | U21#(X1, X2) |
mark#(s(X)) | → | mark#(X) | | active#(plus(N, 0)) | → | isNat#(N) |
mark#(U12(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) |
U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) | | active#(plus(N, s(M))) | → | and#(isNat(N), isNatKind(N)) |
active#(U11(tt, V1, V2)) | → | mark#(U12(isNat(V1), V2)) | | and#(mark(X1), X2) | → | and#(X1, X2) |
active#(U21(tt, V1)) | → | isNat#(V1) | | active#(isNat(s(V1))) | → | isNatKind#(V1) |
mark#(and(X1, X2)) | → | mark#(X1) | | U41#(X1, active(X2), X3) | → | U41#(X1, X2, X3) |
active#(plus(N, s(M))) | → | isNatKind#(M) | | mark#(U41(X1, X2, X3)) | → | mark#(X1) |
mark#(U22(X)) | → | U22#(mark(X)) | | mark#(U22(X)) | → | active#(U22(mark(X))) |
active#(U12(tt, V2)) | → | mark#(U13(isNat(V2))) | | plus#(mark(X1), X2) | → | plus#(X1, X2) |
mark#(U11(X1, X2, X3)) | → | mark#(X1) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
mark#(U13(X)) | → | U13#(mark(X)) | | U12#(X1, active(X2)) | → | U12#(X1, X2) |
mark#(tt) | → | active#(tt) | | U31#(X1, active(X2)) | → | U31#(X1, X2) |
active#(U11(tt, V1, V2)) | → | isNat#(V1) | | U21#(X1, mark(X2)) | → | U21#(X1, X2) |
mark#(U21(X1, X2)) | → | active#(U21(mark(X1), X2)) | | U11#(active(X1), X2, X3) | → | U11#(X1, X2, X3) |
U13#(mark(X)) | → | U13#(X) | | mark#(U13(X)) | → | active#(U13(mark(X))) |
active#(isNatKind(s(V1))) | → | mark#(isNatKind(V1)) | | U41#(X1, X2, active(X3)) | → | U41#(X1, X2, X3) |
mark#(U31(X1, X2)) | → | active#(U31(mark(X1), X2)) | | mark#(isNatKind(X)) | → | isNatKind#(X) |
isNatKind#(mark(X)) | → | isNatKind#(X) | | active#(U11(tt, V1, V2)) | → | U12#(isNat(V1), V2) |
active#(plus(N, 0)) | → | mark#(U31(and(isNat(N), isNatKind(N)), N)) | | mark#(0) | → | active#(0) |
mark#(s(X)) | → | active#(s(mark(X))) | | U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) |
U21#(active(X1), X2) | → | U21#(X1, X2) | | active#(U41(tt, M, N)) | → | s#(plus(N, M)) |
active#(plus(N, s(M))) | → | and#(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))) | | mark#(U22(X)) | → | mark#(X) |
active#(plus(N, s(M))) | → | mark#(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) | | active#(isNat(s(V1))) | → | U21#(isNatKind(V1), V1) |
active#(plus(N, s(M))) | → | isNat#(M) | | mark#(U12(X1, X2)) | → | active#(U12(mark(X1), X2)) |
mark#(U41(X1, X2, X3)) | → | active#(U41(mark(X1), X2, X3)) | | U13#(active(X)) | → | U13#(X) |
U11#(X1, X2, active(X3)) | → | U11#(X1, X2, X3) | | active#(plus(N, s(M))) | → | and#(isNat(M), isNatKind(M)) |
active#(U21(tt, V1)) | → | mark#(U22(isNat(V1))) | | mark#(isNatKind(X)) | → | active#(isNatKind(X)) |
mark#(s(X)) | → | s#(mark(X)) | | mark#(U11(X1, X2, X3)) | → | active#(U11(mark(X1), X2, X3)) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | U31#(active(X1), X2) | → | U31#(X1, X2) |
U22#(mark(X)) | → | U22#(X) | | mark#(U31(X1, X2)) | → | mark#(X1) |
U12#(mark(X1), X2) | → | U12#(X1, X2) | | active#(isNatKind(plus(V1, V2))) | → | and#(isNatKind(V1), isNatKind(V2)) |
active#(U41(tt, M, N)) | → | plus#(N, M) | | active#(isNat(0)) | → | mark#(tt) |
mark#(and(X1, X2)) | → | and#(mark(X1), X2) | | active#(isNatKind(plus(V1, V2))) | → | mark#(and(isNatKind(V1), isNatKind(V2))) |
U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) | | active#(U12(tt, V2)) | → | U13#(isNat(V2)) |
active#(U21(tt, V1)) | → | U22#(isNat(V1)) | | mark#(plus(X1, X2)) | → | mark#(X1) |
isNatKind#(active(X)) | → | isNatKind#(X) | | U41#(active(X1), X2, X3) | → | U41#(X1, X2, X3) |
plus#(X1, active(X2)) | → | plus#(X1, X2) | | U22#(active(X)) | → | U22#(X) |
active#(plus(N, s(M))) | → | U41#(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) | | and#(active(X1), X2) | → | and#(X1, X2) |
mark#(U41(X1, X2, X3)) | → | U41#(mark(X1), X2, X3) | | mark#(isNat(X)) | → | active#(isNat(X)) |
active#(plus(N, s(M))) | → | isNat#(N) | | and#(X1, active(X2)) | → | and#(X1, X2) |
active#(plus(N, s(M))) | → | isNatKind#(N) | | mark#(U21(X1, X2)) | → | U21#(mark(X1), X2) |
mark#(U21(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | isNat#(X) |
isNat#(mark(X)) | → | isNat#(X) | | U31#(X1, mark(X2)) | → | U31#(X1, X2) |
active#(U41(tt, M, N)) | → | mark#(s(plus(N, M))) | | active#(isNat(plus(V1, V2))) | → | isNatKind#(V2) |
active#(isNat(plus(V1, V2))) | → | isNatKind#(V1) | | active#(plus(N, 0)) | → | isNatKind#(N) |
U11#(X1, X2, mark(X3)) | → | U11#(X1, X2, X3) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) |
active#(U13(tt)) | → | mark#(tt) | | active#(plus(N, 0)) | → | U31#(and(isNat(N), isNatKind(N)), N) |
active#(isNat(plus(V1, V2))) | → | and#(isNatKind(V1), isNatKind(V2)) | | U12#(X1, mark(X2)) | → | U12#(X1, X2) |
active#(isNatKind(s(V1))) | → | isNatKind#(V1) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
active#(isNatKind(plus(V1, V2))) | → | isNatKind#(V2) | | mark#(plus(X1, X2)) | → | plus#(mark(X1), mark(X2)) |
active#(isNat(s(V1))) | → | mark#(U21(isNatKind(V1), V1)) | | active#(and(tt, X)) | → | mark#(X) |
U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) | | U31#(mark(X1), X2) | → | U31#(X1, X2) |
mark#(U12(X1, X2)) | → | U12#(mark(X1), X2) | | s#(mark(X)) | → | s#(X) |
mark#(U31(X1, X2)) | → | U31#(mark(X1), X2) | | U21#(mark(X1), X2) | → | U21#(X1, X2) |
U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) | | s#(active(X)) | → | s#(X) |
active#(U31(tt, N)) | → | mark#(N) | | active#(isNat(plus(V1, V2))) | → | mark#(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
mark#(U13(X)) | → | mark#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
The following SCCs where found
U21#(X1, mark(X2)) → U21#(X1, X2) | U21#(mark(X1), X2) → U21#(X1, X2) |
U21#(active(X1), X2) → U21#(X1, X2) | U21#(X1, active(X2)) → U21#(X1, X2) |
U12#(active(X1), X2) → U12#(X1, X2) | U12#(X1, active(X2)) → U12#(X1, X2) |
U12#(mark(X1), X2) → U12#(X1, X2) | U12#(X1, mark(X2)) → U12#(X1, X2) |
U13#(mark(X)) → U13#(X) | U13#(active(X)) → U13#(X) |
and#(active(X1), X2) → and#(X1, X2) | and#(X1, active(X2)) → and#(X1, X2) |
and#(mark(X1), X2) → and#(X1, X2) | and#(X1, mark(X2)) → and#(X1, X2) |
isNat#(active(X)) → isNat#(X) | isNat#(mark(X)) → isNat#(X) |
s#(mark(X)) → s#(X) | s#(active(X)) → s#(X) |
active#(isNatKind(0)) → mark#(tt) | mark#(isNat(X)) → active#(isNat(X)) |
active#(U21(tt, V1)) → mark#(U22(isNat(V1))) | mark#(isNatKind(X)) → active#(isNatKind(X)) |
mark#(tt) → active#(tt) | mark#(U21(X1, X2)) → mark#(X1) |
active#(U41(tt, M, N)) → mark#(s(plus(N, M))) | mark#(U11(X1, X2, X3)) → active#(U11(mark(X1), X2, X3)) |
active#(U22(tt)) → mark#(tt) | mark#(U21(X1, X2)) → active#(U21(mark(X1), X2)) |
mark#(plus(X1, X2)) → mark#(X2) | mark#(and(X1, X2)) → active#(and(mark(X1), X2)) |
mark#(U31(X1, X2)) → mark#(X1) | mark#(U13(X)) → active#(U13(mark(X))) |
mark#(s(X)) → mark#(X) | active#(isNatKind(s(V1))) → mark#(isNatKind(V1)) |
mark#(U31(X1, X2)) → active#(U31(mark(X1), X2)) | active#(U13(tt)) → mark#(tt) |
mark#(U12(X1, X2)) → mark#(X1) | active#(plus(N, 0)) → mark#(U31(and(isNat(N), isNatKind(N)), N)) |
mark#(0) → active#(0) | mark#(plus(X1, X2)) → active#(plus(mark(X1), mark(X2))) |
mark#(s(X)) → active#(s(mark(X))) | active#(isNat(0)) → mark#(tt) |
active#(isNatKind(plus(V1, V2))) → mark#(and(isNatKind(V1), isNatKind(V2))) | active#(U11(tt, V1, V2)) → mark#(U12(isNat(V1), V2)) |
active#(isNat(s(V1))) → mark#(U21(isNatKind(V1), V1)) | active#(and(tt, X)) → mark#(X) |
mark#(plus(X1, X2)) → mark#(X1) | mark#(and(X1, X2)) → mark#(X1) |
mark#(U22(X)) → mark#(X) | mark#(U41(X1, X2, X3)) → mark#(X1) |
active#(plus(N, s(M))) → mark#(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) | mark#(U12(X1, X2)) → active#(U12(mark(X1), X2)) |
mark#(U41(X1, X2, X3)) → active#(U41(mark(X1), X2, X3)) | active#(U31(tt, N)) → mark#(N) |
mark#(U22(X)) → active#(U22(mark(X))) | active#(isNat(plus(V1, V2))) → mark#(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active#(U12(tt, V2)) → mark#(U13(isNat(V2))) | mark#(U11(X1, X2, X3)) → mark#(X1) |
mark#(U13(X)) → mark#(X) |
U41#(X1, active(X2), X3) → U41#(X1, X2, X3) | U41#(X1, X2, mark(X3)) → U41#(X1, X2, X3) |
U41#(active(X1), X2, X3) → U41#(X1, X2, X3) | U41#(mark(X1), X2, X3) → U41#(X1, X2, X3) |
U41#(X1, X2, active(X3)) → U41#(X1, X2, X3) | U41#(X1, mark(X2), X3) → U41#(X1, X2, X3) |
isNatKind#(active(X)) → isNatKind#(X) | isNatKind#(mark(X)) → isNatKind#(X) |
U22#(mark(X)) → U22#(X) | U22#(active(X)) → U22#(X) |
plus#(X1, mark(X2)) → plus#(X1, X2) | plus#(X1, active(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) | plus#(active(X1), X2) → plus#(X1, X2) |
U11#(X1, X2, mark(X3)) → U11#(X1, X2, X3) | U11#(X1, active(X2), X3) → U11#(X1, X2, X3) |
U11#(active(X1), X2, X3) → U11#(X1, X2, X3) | U11#(X1, mark(X2), X3) → U11#(X1, X2, X3) |
U11#(mark(X1), X2, X3) → U11#(X1, X2, X3) | U11#(X1, X2, active(X3)) → U11#(X1, X2, X3) |
U31#(active(X1), X2) → U31#(X1, X2) | U31#(X1, active(X2)) → U31#(X1, X2) |
U31#(X1, mark(X2)) → U31#(X1, X2) | U31#(mark(X1), X2) → U31#(X1, X2) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U13#(mark(X)) | → | U13#(X) | | U13#(active(X)) | → | U13#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U13#(mark(X)) | → | U13#(X) | | U13#(active(X)) | → | U13#(X) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U21#(X1, mark(X2)) | → | U21#(X1, X2) | | U21#(mark(X1), X2) | → | U21#(X1, X2) |
U21#(active(X1), X2) | → | U21#(X1, X2) | | U21#(X1, active(X2)) | → | U21#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U21#(mark(X1), X2) | → | U21#(X1, X2) | | U21#(active(X1), X2) | → | U21#(X1, X2) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U41#(X1, active(X2), X3) | → | U41#(X1, X2, X3) | | U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) |
U41#(active(X1), X2, X3) | → | U41#(X1, X2, X3) | | U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) |
U41#(X1, X2, active(X3)) | → | U41#(X1, X2, X3) | | U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U41#(active(X1), X2, X3) | → | U41#(X1, X2, X3) | | U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) |
Problem 16: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U41#(X1, active(X2), X3) | → | U41#(X1, X2, X3) | | U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) |
U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) | | U41#(X1, X2, active(X3)) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- U41#(x,y,z): z
- active(x): x + 1
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U41#(X1, X2, active(X3)) | → | U41#(X1, X2, X3) |
Problem 22: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U41#(X1, active(X2), X3) | → | U41#(X1, X2, X3) | | U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) |
U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- U41#(x,y,z): 2y + 1
- active(x): x + 1
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U41#(X1, active(X2), X3) | → | U41#(X1, X2, X3) |
Problem 26: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U41#(X1, X2, mark(X3)) | → | U41#(X1, X2, X3) | | U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- U41#(x,y,z): y + x + 1
- active(x): 0
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x + 1
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U41#(X1, mark(X2), X3) | → | U41#(X1, X2, X3) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U22#(mark(X)) | → | U22#(X) | | U22#(active(X)) | → | U22#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U22#(mark(X)) | → | U22#(X) | | U22#(active(X)) | → | U22#(X) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNatKind#(active(X)) | → | isNatKind#(X) | | isNatKind#(mark(X)) | → | isNatKind#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNatKind#(active(X)) | → | isNatKind#(X) | | isNatKind#(mark(X)) | → | isNatKind#(X) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U31#(active(X1), X2) | → | U31#(X1, X2) | | U31#(X1, active(X2)) | → | U31#(X1, X2) |
U31#(X1, mark(X2)) | → | U31#(X1, X2) | | U31#(mark(X1), X2) | → | U31#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U31#(active(X1), X2) | → | U31#(X1, X2) | | U31#(mark(X1), X2) | → | U31#(X1, X2) |
Problem 17: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U31#(X1, active(X2)) | → | U31#(X1, X2) | | U31#(X1, mark(X2)) | → | U31#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U31#(x,y): y + 1
- U41(x,y,z): 0
- active(x): 2x + 2
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x + 1
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U31#(X1, active(X2)) | → | U31#(X1, X2) | | U31#(X1, mark(X2)) | → | U31#(X1, X2) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(active(X1), X2) | → | and#(X1, X2) | | and#(X1, active(X2)) | → | and#(X1, X2) |
and#(mark(X1), X2) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(active(X1), X2) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |
Problem 18: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 2x + 2
- and(x,y): 0
- and#(x,y): y + 1
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x + 2
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Problem 19: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
plus#(X1, active(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): x + 2
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x
- plus(x,y): 0
- plus#(x,y): y
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
plus#(X1, active(X2)) | → | plus#(X1, X2) |
Problem 23: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 0
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x + 2
- plus(x,y): 0
- plus#(x,y): y + x + 1
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Problem 12: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U11#(X1, X2, mark(X3)) | → | U11#(X1, X2, X3) | | U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) |
U11#(active(X1), X2, X3) | → | U11#(X1, X2, X3) | | U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) |
U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) | | U11#(X1, X2, active(X3)) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U11#(active(X1), X2, X3) | → | U11#(X1, X2, X3) | | U11#(mark(X1), X2, X3) | → | U11#(X1, X2, X3) |
Problem 20: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U11#(X1, X2, mark(X3)) | → | U11#(X1, X2, X3) | | U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) |
U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) | | U11#(X1, X2, active(X3)) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U11#(x,y,z): z + 1
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 2x
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x + 2
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U11#(X1, X2, mark(X3)) | → | U11#(X1, X2, X3) |
Problem 25: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) | | U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) |
U11#(X1, X2, active(X3)) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U11#(x,y,z): z
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 2x + 1
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U11#(X1, X2, active(X3)) | → | U11#(X1, X2, X3) |
Problem 27: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) | | U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U11#(x,y,z): y + 1
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): x + 1
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U11#(X1, active(X2), X3) | → | U11#(X1, X2, X3) |
Problem 28: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U11#(x,y,z): z + y
- U12(x,y): 0
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 0
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x + 1
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U11#(X1, mark(X2), X3) | → | U11#(X1, X2, X3) |
Problem 13: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U12#(active(X1), X2) | → | U12#(X1, X2) | | U12#(X1, active(X2)) | → | U12#(X1, X2) |
U12#(mark(X1), X2) | → | U12#(X1, X2) | | U12#(X1, mark(X2)) | → | U12#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U12#(active(X1), X2) | → | U12#(X1, X2) | | U12#(mark(X1), X2) | → | U12#(X1, X2) |
Problem 21: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U12#(X1, active(X2)) | → | U12#(X1, X2) | | U12#(X1, mark(X2)) | → | U12#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U13, U31, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U12#(x,y): y + 1
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): x + 1
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): 2x
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U12#(X1, active(X2)) | → | U12#(X1, X2) |
Problem 24: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
U12#(X1, mark(X2)) | → | U12#(X1, X2) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y,z): 0
- U12(x,y): 0
- U12#(x,y): y + x + 1
- U13(x): 0
- U21(x,y): 0
- U22(x): 0
- U31(x,y): 0
- U41(x,y,z): 0
- active(x): 0
- and(x,y): 0
- isNat(x): 0
- isNatKind(x): 0
- mark(x): x + 2
- plus(x,y): 0
- s(x): 0
- tt: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
U12#(X1, mark(X2)) | → | U12#(X1, X2) |
Problem 14: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |
Rewrite Rules
active(U11(tt, V1, V2)) | → | mark(U12(isNat(V1), V2)) | | active(U12(tt, V2)) | → | mark(U13(isNat(V2))) |
active(U13(tt)) | → | mark(tt) | | active(U21(tt, V1)) | → | mark(U22(isNat(V1))) |
active(U22(tt)) | → | mark(tt) | | active(U31(tt, N)) | → | mark(N) |
active(U41(tt, M, N)) | → | mark(s(plus(N, M))) | | active(and(tt, X)) | → | mark(X) |
active(isNat(0)) | → | mark(tt) | | active(isNat(plus(V1, V2))) | → | mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)) |
active(isNat(s(V1))) | → | mark(U21(isNatKind(V1), V1)) | | active(isNatKind(0)) | → | mark(tt) |
active(isNatKind(plus(V1, V2))) | → | mark(and(isNatKind(V1), isNatKind(V2))) | | active(isNatKind(s(V1))) | → | mark(isNatKind(V1)) |
active(plus(N, 0)) | → | mark(U31(and(isNat(N), isNatKind(N)), N)) | | active(plus(N, s(M))) | → | mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)) |
mark(U11(X1, X2, X3)) | → | active(U11(mark(X1), X2, X3)) | | mark(tt) | → | active(tt) |
mark(U12(X1, X2)) | → | active(U12(mark(X1), X2)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(U13(X)) | → | active(U13(mark(X))) | | mark(U21(X1, X2)) | → | active(U21(mark(X1), X2)) |
mark(U22(X)) | → | active(U22(mark(X))) | | mark(U31(X1, X2)) | → | active(U31(mark(X1), X2)) |
mark(U41(X1, X2, X3)) | → | active(U41(mark(X1), X2, X3)) | | mark(s(X)) | → | active(s(mark(X))) |
mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(0) | → | active(0) | | mark(isNatKind(X)) | → | active(isNatKind(X)) |
U11(mark(X1), X2, X3) | → | U11(X1, X2, X3) | | U11(X1, mark(X2), X3) | → | U11(X1, X2, X3) |
U11(X1, X2, mark(X3)) | → | U11(X1, X2, X3) | | U11(active(X1), X2, X3) | → | U11(X1, X2, X3) |
U11(X1, active(X2), X3) | → | U11(X1, X2, X3) | | U11(X1, X2, active(X3)) | → | U11(X1, X2, X3) |
U12(mark(X1), X2) | → | U12(X1, X2) | | U12(X1, mark(X2)) | → | U12(X1, X2) |
U12(active(X1), X2) | → | U12(X1, X2) | | U12(X1, active(X2)) | → | U12(X1, X2) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
U13(mark(X)) | → | U13(X) | | U13(active(X)) | → | U13(X) |
U21(mark(X1), X2) | → | U21(X1, X2) | | U21(X1, mark(X2)) | → | U21(X1, X2) |
U21(active(X1), X2) | → | U21(X1, X2) | | U21(X1, active(X2)) | → | U21(X1, X2) |
U22(mark(X)) | → | U22(X) | | U22(active(X)) | → | U22(X) |
U31(mark(X1), X2) | → | U31(X1, X2) | | U31(X1, mark(X2)) | → | U31(X1, X2) |
U31(active(X1), X2) | → | U31(X1, X2) | | U31(X1, active(X2)) | → | U31(X1, X2) |
U41(mark(X1), X2, X3) | → | U41(X1, X2, X3) | | U41(X1, mark(X2), X3) | → | U41(X1, X2, X3) |
U41(X1, X2, mark(X3)) | → | U41(X1, X2, X3) | | U41(active(X1), X2, X3) | → | U41(X1, X2, X3) |
U41(X1, active(X2), X3) | → | U41(X1, X2, X3) | | U41(X1, X2, active(X3)) | → | U41(X1, X2, X3) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
plus(mark(X1), X2) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
plus(active(X1), X2) | → | plus(X1, X2) | | plus(X1, active(X2)) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatKind(mark(X)) | → | isNatKind(X) | | isNatKind(active(X)) | → | isNatKind(X) |
Original Signature
Termination of terms over the following signature is verified: plus, isNatKind, mark, and, isNat, 0, s, tt, U41, active, U11, U12, U31, U13, U21, U22
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |