YES
The TRS could be proven terminating. The proof took 60001 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (109ms).
| Problem 2 was processed with processor PolynomialLinearRange4iUR (2380ms).
| | Problem 3 was processed with processor PolynomialLinearRange4iUR (1436ms).
| | | Problem 4 was processed with processor DependencyGraph (10ms).
| | | | Problem 5 was processed with processor PolynomialLinearRange4iUR (990ms).
| | | | | Problem 6 was processed with processor PolynomialLinearRange4iUR (930ms).
| | | | | | Problem 7 was processed with processor PolynomialLinearRange4iUR (986ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Y) | | a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) |
mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) | | a____#(nil, X) | → | mark#(X) |
mark#(isNePal(X)) | → | a__isNePal#(mark(X)) | | a____#(__(X, Y), Z) | → | mark#(X) |
a____#(X, nil) | → | mark#(X) | | a____#(__(X, Y), Z) | → | mark#(Z) |
mark#(and(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
mark#(and(X1, X2)) | → | a__and#(mark(X1), X2) | | a__and#(tt, X) | → | mark#(X) |
mark#(__(X1, X2)) | → | mark#(X1) | | mark#(isNePal(X)) | → | mark#(X) |
mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, nil, a__and, and
Strategy
The following SCCs where found
a____#(__(X, Y), Z) → mark#(Y) | a____#(__(X, Y), Z) → a____#(mark(Y), mark(Z)) |
mark#(__(X1, X2)) → a____#(mark(X1), mark(X2)) | a____#(nil, X) → mark#(X) |
a____#(__(X, Y), Z) → mark#(X) | a____#(X, nil) → mark#(X) |
a____#(__(X, Y), Z) → mark#(Z) | mark#(and(X1, X2)) → mark#(X1) |
a____#(__(X, Y), Z) → a____#(mark(X), a____(mark(Y), mark(Z))) | mark#(and(X1, X2)) → a__and#(mark(X1), X2) |
a__and#(tt, X) → mark#(X) | mark#(__(X1, X2)) → mark#(X1) |
mark#(isNePal(X)) → mark#(X) | mark#(__(X1, X2)) → mark#(X2) |
Problem 2: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Y) | | mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) |
a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) | | a____#(nil, X) | → | mark#(X) |
a____#(__(X, Y), Z) | → | mark#(X) | | a____#(X, nil) | → | mark#(X) |
mark#(and(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | mark#(Z) |
mark#(and(X1, X2)) | → | a__and#(mark(X1), X2) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
a__and#(tt, X) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X1) |
mark#(isNePal(X)) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, nil, a__and, and
Strategy
Polynomial Interpretation
- __(x,y): y + x
- a____(x,y): y + x
- a____#(x,y): y + x
- a__and(x,y): 2y + x
- a__and#(x,y): 2y
- a__isNePal(x): 2x + 1
- and(x,y): 2y + x
- isNePal(x): 2x + 1
- mark(x): x
- mark#(x): x
- nil: 0
- tt: 0
Improved Usable rules
mark(tt) | → | tt | | a__and(X1, X2) | → | and(X1, X2) |
a__and(tt, X) | → | mark(X) | | a____(X, nil) | → | mark(X) |
mark(isNePal(X)) | → | a__isNePal(mark(X)) | | a____(X1, X2) | → | __(X1, X2) |
a__isNePal(X) | → | isNePal(X) | | a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) |
a____(nil, X) | → | mark(X) | | mark(and(X1, X2)) | → | a__and(mark(X1), X2) |
mark(nil) | → | nil | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
a__isNePal(__(I, __(P, I))) | → | tt |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(isNePal(X)) | → | mark#(X) |
Problem 3: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Y) | | mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) |
a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) | | a____#(nil, X) | → | mark#(X) |
a____#(__(X, Y), Z) | → | mark#(X) | | a____#(X, nil) | → | mark#(X) |
mark#(and(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | mark#(Z) |
mark#(and(X1, X2)) | → | a__and#(mark(X1), X2) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
a__and#(tt, X) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X1) |
mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, and, a__and, nil
Strategy
Polynomial Interpretation
- __(x,y): y + x
- a____(x,y): y + x
- a____#(x,y): 2y + 2x
- a__and(x,y): y + 2x
- a__and#(x,y): 2y + x
- a__isNePal(x): 3x + 1
- and(x,y): y + 2x
- isNePal(x): 3x + 1
- mark(x): x
- mark#(x): 2x
- nil: 0
- tt: 1
Improved Usable rules
mark(tt) | → | tt | | a__and(X1, X2) | → | and(X1, X2) |
a__and(tt, X) | → | mark(X) | | a____(X, nil) | → | mark(X) |
mark(isNePal(X)) | → | a__isNePal(mark(X)) | | a____(X1, X2) | → | __(X1, X2) |
a__isNePal(X) | → | isNePal(X) | | a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) |
a____(nil, X) | → | mark(X) | | mark(and(X1, X2)) | → | a__and(mark(X1), X2) |
mark(nil) | → | nil | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
a__isNePal(__(I, __(P, I))) | → | tt |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
a__and#(tt, X) | → | mark#(X) |
Problem 4: DependencyGraph
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Z) | | mark#(and(X1, X2)) | → | mark#(X1) |
a____#(__(X, Y), Z) | → | mark#(Y) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
mark#(and(X1, X2)) | → | a__and#(mark(X1), X2) | | a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) |
mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) | | a____#(nil, X) | → | mark#(X) |
mark#(__(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | mark#(X) |
a____#(X, nil) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, nil, a__and, and
Strategy
The following SCCs where found
mark#(and(X1, X2)) → mark#(X1) | a____#(__(X, Y), Z) → mark#(Z) |
a____#(__(X, Y), Z) → mark#(Y) | a____#(__(X, Y), Z) → a____#(mark(X), a____(mark(Y), mark(Z))) |
mark#(__(X1, X2)) → a____#(mark(X1), mark(X2)) | a____#(__(X, Y), Z) → a____#(mark(Y), mark(Z)) |
a____#(nil, X) → mark#(X) | mark#(__(X1, X2)) → mark#(X1) |
a____#(__(X, Y), Z) → mark#(X) | a____#(X, nil) → mark#(X) |
mark#(__(X1, X2)) → mark#(X2) |
Problem 5: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | mark#(Z) |
a____#(__(X, Y), Z) | → | mark#(Y) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) | | a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) |
a____#(nil, X) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X1) |
a____#(__(X, Y), Z) | → | mark#(X) | | a____#(X, nil) | → | mark#(X) |
mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, nil, a__and, and
Strategy
Polynomial Interpretation
- __(x,y): y + x
- a____(x,y): y + x
- a____#(x,y): y + x
- a__and(x,y): 2y + 2x
- a__isNePal(x): 0
- and(x,y): 2y + 2x
- isNePal(x): 0
- mark(x): x
- mark#(x): x
- nil: 2
- tt: 0
Improved Usable rules
mark(tt) | → | tt | | a__and(X1, X2) | → | and(X1, X2) |
a__and(tt, X) | → | mark(X) | | a____(X, nil) | → | mark(X) |
mark(isNePal(X)) | → | a__isNePal(mark(X)) | | a____(X1, X2) | → | __(X1, X2) |
a__isNePal(X) | → | isNePal(X) | | a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) |
a____(nil, X) | → | mark(X) | | mark(and(X1, X2)) | → | a__and(mark(X1), X2) |
mark(nil) | → | nil | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
a__isNePal(__(I, __(P, I))) | → | tt |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
a____#(nil, X) | → | mark#(X) | | a____#(X, nil) | → | mark#(X) |
Problem 6: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Z) | | mark#(and(X1, X2)) | → | mark#(X1) |
a____#(__(X, Y), Z) | → | mark#(Y) | | a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) |
a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) | | mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) |
mark#(__(X1, X2)) | → | mark#(X1) | | a____#(__(X, Y), Z) | → | mark#(X) |
mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, and, a__and, nil
Strategy
Polynomial Interpretation
- __(x,y): y + x
- a____(x,y): y + x
- a____#(x,y): 2y + 2x
- a__and(x,y): 2y + x + 1
- a__isNePal(x): 3x
- and(x,y): 2y + x + 1
- isNePal(x): 3x
- mark(x): x
- mark#(x): 2x
- nil: 0
- tt: 0
Improved Usable rules
mark(tt) | → | tt | | a__and(X1, X2) | → | and(X1, X2) |
a__and(tt, X) | → | mark(X) | | a____(X, nil) | → | mark(X) |
mark(isNePal(X)) | → | a__isNePal(mark(X)) | | a____(X1, X2) | → | __(X1, X2) |
a__isNePal(X) | → | isNePal(X) | | a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) |
a____(nil, X) | → | mark(X) | | mark(and(X1, X2)) | → | a__and(mark(X1), X2) |
mark(nil) | → | nil | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
a__isNePal(__(I, __(P, I))) | → | tt |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(and(X1, X2)) | → | mark#(X1) |
Problem 7: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
a____#(__(X, Y), Z) | → | mark#(Z) | | a____#(__(X, Y), Z) | → | mark#(Y) |
a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) | | mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) |
a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) | | mark#(__(X1, X2)) | → | mark#(X1) |
a____#(__(X, Y), Z) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X2) |
Rewrite Rules
a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) | | a____(X, nil) | → | mark(X) |
a____(nil, X) | → | mark(X) | | a__and(tt, X) | → | mark(X) |
a__isNePal(__(I, __(P, I))) | → | tt | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
mark(and(X1, X2)) | → | a__and(mark(X1), X2) | | mark(isNePal(X)) | → | a__isNePal(mark(X)) |
mark(nil) | → | nil | | mark(tt) | → | tt |
a____(X1, X2) | → | __(X1, X2) | | a__and(X1, X2) | → | and(X1, X2) |
a__isNePal(X) | → | isNePal(X) |
Original Signature
Termination of terms over the following signature is verified: a____, tt, isNePal, __, mark, a__isNePal, nil, a__and, and
Strategy
Polynomial Interpretation
- __(x,y): y + 2x + 1
- a____(x,y): y + 2x + 1
- a____#(x,y): y + 2x + 1
- a__and(x,y): y
- a__isNePal(x): 0
- and(x,y): y
- isNePal(x): 0
- mark(x): x
- mark#(x): x + 2
- nil: 1
- tt: 0
Improved Usable rules
mark(tt) | → | tt | | a__and(X1, X2) | → | and(X1, X2) |
a__and(tt, X) | → | mark(X) | | a____(X, nil) | → | mark(X) |
mark(isNePal(X)) | → | a__isNePal(mark(X)) | | a____(X1, X2) | → | __(X1, X2) |
a__isNePal(X) | → | isNePal(X) | | a____(__(X, Y), Z) | → | a____(mark(X), a____(mark(Y), mark(Z))) |
a____(nil, X) | → | mark(X) | | mark(and(X1, X2)) | → | a__and(mark(X1), X2) |
mark(nil) | → | nil | | mark(__(X1, X2)) | → | a____(mark(X1), mark(X2)) |
a__isNePal(__(I, __(P, I))) | → | tt |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
a____#(__(X, Y), Z) | → | mark#(Z) | | a____#(__(X, Y), Z) | → | mark#(Y) |
a____#(__(X, Y), Z) | → | a____#(mark(X), a____(mark(Y), mark(Z))) | | a____#(__(X, Y), Z) | → | a____#(mark(Y), mark(Z)) |
mark#(__(X1, X2)) | → | a____#(mark(X1), mark(X2)) | | mark#(__(X1, X2)) | → | mark#(X1) |
a____#(__(X, Y), Z) | → | mark#(X) | | mark#(__(X1, X2)) | → | mark#(X2) |