YES

The TRS could be proven terminating. The proof took 1514 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (288ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4iUR (640ms).
 |    | – Problem 9 was processed with processor PolynomialLinearRange4iUR (425ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (2ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

top#(ok(X))top#(active(X))active#(__(__(X, Y), Z))__#(X, __(Y, Z))
and#(ok(X1), ok(X2))and#(X1, X2)proper#(and(X1, X2))proper#(X1)
proper#(and(X1, X2))and#(proper(X1), proper(X2))top#(ok(X))active#(X)
proper#(__(X1, X2))__#(proper(X1), proper(X2))active#(and(X1, X2))and#(active(X1), X2)
proper#(and(X1, X2))proper#(X2)active#(__(X1, X2))active#(X2)
active#(__(X1, X2))__#(X1, active(X2))active#(isNePal(X))isNePal#(active(X))
top#(mark(X))proper#(X)active#(__(X1, X2))__#(active(X1), X2)
proper#(__(X1, X2))proper#(X1)__#(mark(X1), X2)__#(X1, X2)
active#(isNePal(X))active#(X)top#(mark(X))top#(proper(X))
active#(__(X1, X2))active#(X1)__#(ok(X1), ok(X2))__#(X1, X2)
proper#(isNePal(X))proper#(X)__#(X1, mark(X2))__#(X1, X2)
active#(__(__(X, Y), Z))__#(Y, Z)isNePal#(mark(X))isNePal#(X)
proper#(__(X1, X2))proper#(X2)and#(mark(X1), X2)and#(X1, X2)
isNePal#(ok(X))isNePal#(X)proper#(isNePal(X))isNePal#(proper(X))
active#(and(X1, X2))active#(X1)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


The following SCCs where found

__#(mark(X1), X2) → __#(X1, X2)__#(ok(X1), ok(X2)) → __#(X1, X2)
__#(X1, mark(X2)) → __#(X1, X2)

active#(isNePal(X)) → active#(X)active#(__(X1, X2)) → active#(X1)
active#(__(X1, X2)) → active#(X2)active#(and(X1, X2)) → active#(X1)

proper#(__(X1, X2)) → proper#(X1)proper#(and(X1, X2)) → proper#(X2)
proper#(isNePal(X)) → proper#(X)proper#(__(X1, X2)) → proper#(X2)
proper#(and(X1, X2)) → proper#(X1)

isNePal#(mark(X)) → isNePal#(X)isNePal#(ok(X)) → isNePal#(X)

and#(ok(X1), ok(X2)) → and#(X1, X2)and#(mark(X1), X2) → and#(X1, X2)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

isNePal#(mark(X))isNePal#(X)isNePal#(ok(X))isNePal#(X)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

isNePal#(mark(X))isNePal#(X)isNePal#(ok(X))isNePal#(X)

Problem 4: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Polynomial Interpretation

Improved Usable rules

active(__(X1, X2))__(active(X1), X2)__(ok(X1), ok(X2))ok(__(X1, X2))
active(__(nil, X))mark(X)and(ok(X1), ok(X2))ok(and(X1, X2))
active(__(X, nil))mark(X)proper(__(X1, X2))__(proper(X1), proper(X2))
proper(tt)ok(tt)active(isNePal(X))isNePal(active(X))
active(and(tt, X))mark(X)proper(isNePal(X))isNePal(proper(X))
__(mark(X1), X2)mark(__(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))proper(nil)ok(nil)
and(mark(X1), X2)mark(and(X1, X2))isNePal(ok(X))ok(isNePal(X))
active(__(X1, X2))__(X1, active(X2))isNePal(mark(X))mark(isNePal(X))
__(X1, mark(X2))mark(__(X1, X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(__(I, __(P, I))))mark(tt)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

top#(mark(X))top#(proper(X))

Problem 9: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

top#(ok(X))top#(active(X))

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, __, active, ok, mark, proper, top, and, nil

Strategy


Polynomial Interpretation

Improved Usable rules

active(__(X1, X2))__(active(X1), X2)__(ok(X1), ok(X2))ok(__(X1, X2))
active(__(nil, X))mark(X)and(ok(X1), ok(X2))ok(and(X1, X2))
active(__(X, nil))mark(X)active(isNePal(X))isNePal(active(X))
active(and(tt, X))mark(X)__(mark(X1), X2)mark(__(X1, X2))
active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))and(mark(X1), X2)mark(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))active(__(X1, X2))__(X1, active(X2))
isNePal(mark(X))mark(isNePal(X))__(X1, mark(X2))mark(__(X1, X2))
active(isNePal(__(I, __(P, I))))mark(tt)active(and(X1, X2))and(active(X1), X2)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

top#(ok(X))top#(active(X))

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(__(X1, X2))proper#(X1)proper#(and(X1, X2))proper#(X2)
proper#(isNePal(X))proper#(X)proper#(__(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X1)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(__(X1, X2))proper#(X1)proper#(and(X1, X2))proper#(X2)
proper#(isNePal(X))proper#(X)proper#(__(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X1)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

__#(mark(X1), X2)__#(X1, X2)__#(ok(X1), ok(X2))__#(X1, X2)
__#(X1, mark(X2))__#(X1, X2)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

__#(mark(X1), X2)__#(X1, X2)__#(ok(X1), ok(X2))__#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

__#(X1, mark(X2))__#(X1, X2)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, __, active, ok, mark, proper, top, and, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

__#(X1, mark(X2))__#(X1, X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(isNePal(X))active#(X)active#(__(X1, X2))active#(X1)
active#(__(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)

Rewrite Rules

active(__(__(X, Y), Z))mark(__(X, __(Y, Z)))active(__(X, nil))mark(X)
active(__(nil, X))mark(X)active(and(tt, X))mark(X)
active(isNePal(__(I, __(P, I))))mark(tt)active(__(X1, X2))__(active(X1), X2)
active(__(X1, X2))__(X1, active(X2))active(and(X1, X2))and(active(X1), X2)
active(isNePal(X))isNePal(active(X))__(mark(X1), X2)mark(__(X1, X2))
__(X1, mark(X2))mark(__(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
isNePal(mark(X))mark(isNePal(X))proper(__(X1, X2))__(proper(X1), proper(X2))
proper(nil)ok(nil)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(isNePal(X))isNePal(proper(X))
__(ok(X1), ok(X2))ok(__(X1, X2))and(ok(X1), ok(X2))ok(and(X1, X2))
isNePal(ok(X))ok(isNePal(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: tt, isNePal, active, __, mark, ok, proper, nil, and, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(isNePal(X))active#(X)active#(__(X1, X2))active#(X1)
active#(__(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)