YES

The TRS could be proven terminating. The proof took 46864 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (588ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (706ms).
 |    | – Problem 6 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (158ms).
 |    | – Problem 7 was processed with processor DependencyGraph (7ms).
 |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (137ms).
 |    |    |    | – Problem 9 was processed with processor DependencyGraph (2ms).
 | – Problem 4 was processed with processor SubtermCriterion (23ms).
 | – Problem 5 was processed with processor SubtermCriterion (8ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNeList#(n____(V1, V2))U41#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2))U51#(isNeList(activate(V1)), activate(V2))
activate#(n__o)o#isNePal#(n____(I, n____(P, I)))activate#(I)
activate#(n____(X1, X2))activate#(X2)isList#(V)U11#(isNeList(activate(V)))
isNeList#(n____(V1, V2))isList#(activate(V1))isList#(n____(V1, V2))U21#(isList(activate(V1)), activate(V2))
activate#(n__a)a#isNePal#(n____(I, n____(P, I)))isQid#(activate(I))
U21#(tt, V2)U22#(isList(activate(V2)))isNeList#(n____(V1, V2))activate#(V1)
U51#(tt, V2)activate#(V2)U71#(tt, P)isPal#(activate(P))
U41#(tt, V2)U42#(isNeList(activate(V2)))isPal#(V)isNePal#(activate(V))
activate#(n__u)u#activate#(n__e)e#
isNeList#(V)U31#(isQid(activate(V)))activate#(n__i)i#
isNeList#(n____(V1, V2))activate#(V2)isPal#(V)activate#(V)
U51#(tt, V2)U52#(isList(activate(V2)))isNeList#(n____(V1, V2))isNeList#(activate(V1))
isList#(n____(V1, V2))isList#(activate(V1))isPal#(V)U81#(isNePal(activate(V)))
isNePal#(n____(I, n____(P, I)))activate#(P)isNePal#(V)isQid#(activate(V))
__#(__(X, Y), Z)__#(Y, Z)isNePal#(V)activate#(V)
activate#(n____(X1, X2))__#(activate(X1), activate(X2))isList#(n____(V1, V2))activate#(V1)
U41#(tt, V2)isNeList#(activate(V2))isList#(n____(V1, V2))activate#(V2)
isNeList#(V)activate#(V)U21#(tt, V2)activate#(V2)
U41#(tt, V2)activate#(V2)activate#(n____(X1, X2))activate#(X1)
isNePal#(V)U61#(isQid(activate(V)))U21#(tt, V2)isList#(activate(V2))
U71#(tt, P)U72#(isPal(activate(P)))__#(__(X, Y), Z)__#(X, __(Y, Z))
isNeList#(V)isQid#(activate(V))U71#(tt, P)activate#(P)
activate#(n__nil)nil#U51#(tt, V2)isList#(activate(V2))
isNePal#(n____(I, n____(P, I)))U71#(isQid(activate(I)), activate(P))isList#(V)activate#(V)
isList#(V)isNeList#(activate(V))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


The following SCCs where found

activate#(n____(X1, X2)) → activate#(X1)activate#(n____(X1, X2)) → activate#(X2)

U71#(tt, P) → isPal#(activate(P))isNePal#(n____(I, n____(P, I))) → U71#(isQid(activate(I)), activate(P))
isPal#(V) → isNePal#(activate(V))

__#(__(X, Y), Z) → __#(X, __(Y, Z))__#(__(X, Y), Z) → __#(Y, Z)

isList#(n____(V1, V2)) → U21#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2)) → U41#(isList(activate(V1)), activate(V2))
isNeList#(n____(V1, V2)) → U51#(isNeList(activate(V1)), activate(V2))U21#(tt, V2) → isList#(activate(V2))
U51#(tt, V2) → isList#(activate(V2))isNeList#(n____(V1, V2)) → isNeList#(activate(V1))
U41#(tt, V2) → isNeList#(activate(V2))isNeList#(n____(V1, V2)) → isList#(activate(V1))
isList#(n____(V1, V2)) → isList#(activate(V1))isList#(V) → isNeList#(activate(V))

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

U71#(tt, P)isPal#(activate(P))isNePal#(n____(I, n____(P, I)))U71#(isQid(activate(I)), activate(P))
isPal#(V)isNePal#(activate(V))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


Polynomial Interpretation

Improved Usable rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
en__eactivate(n__i)i
an__aactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(X)X
activate(n__u)u__(nil, X)X
in__iun__u
activate(n__o)o__(X1, X2)n____(X1, X2)
niln__nilon__o
activate(n__a)aactivate(n__e)e

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isNePal#(n____(I, n____(P, I)))U71#(isQid(activate(I)), activate(P))

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U71#(tt, P)isPal#(activate(P))isPal#(V)isNePal#(activate(V))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, n__o, U42, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U52, U81, U11, U31, isQid, n____, nil

Strategy


There are no SCCs!

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isList#(n____(V1, V2))U21#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2))U41#(isList(activate(V1)), activate(V2))
isNeList#(n____(V1, V2))U51#(isNeList(activate(V1)), activate(V2))U21#(tt, V2)isList#(activate(V2))
U51#(tt, V2)isList#(activate(V2))isNeList#(n____(V1, V2))isNeList#(activate(V1))
U41#(tt, V2)isNeList#(activate(V2))isNeList#(n____(V1, V2))isList#(activate(V1))
isList#(n____(V1, V2))isList#(activate(V1))isList#(V)isNeList#(activate(V))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


Polynomial Interpretation

Standard Usable rules

__(__(X, Y), Z)__(X, __(Y, Z))U51(tt, V2)U52(isList(activate(V2)))
__(X, nil)Xan__a
U31(tt)ttactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isQid(n__u)tt
isList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))isQid(n__e)tt
U41(tt, V2)U42(isNeList(activate(V2)))isList(V)U11(isNeList(activate(V)))
__(X1, X2)n____(X1, X2)U22(tt)tt
activate(n__a)aU11(tt)tt
en__eactivate(n__i)i
isList(n__nil)ttisQid(n__a)tt
isQid(n__i)ttU42(tt)tt
U21(tt, V2)U22(isList(activate(V2)))isNeList(V)U31(isQid(activate(V)))
activate(X)Xactivate(n__u)u
__(nil, X)Xin__i
un__uactivate(n__o)o
niln__nilon__o
isQid(n__o)ttU52(tt)tt
activate(n__e)e

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

U41#(tt, V2)isNeList#(activate(V2))

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isList#(n____(V1, V2))U21#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2))U41#(isList(activate(V1)), activate(V2))
isNeList#(n____(V1, V2))U51#(isNeList(activate(V1)), activate(V2))U21#(tt, V2)isList#(activate(V2))
U51#(tt, V2)isList#(activate(V2))isNeList#(n____(V1, V2))isNeList#(activate(V1))
isList#(V)isNeList#(activate(V))isList#(n____(V1, V2))isList#(activate(V1))
isNeList#(n____(V1, V2))isList#(activate(V1))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, n__o, U42, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U52, U81, U11, U31, isQid, n____, nil

Strategy


The following SCCs where found

isList#(n____(V1, V2)) → U21#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2)) → U51#(isNeList(activate(V1)), activate(V2))
U21#(tt, V2) → isList#(activate(V2))U51#(tt, V2) → isList#(activate(V2))
isNeList#(n____(V1, V2)) → isNeList#(activate(V1))isList#(V) → isNeList#(activate(V))
isNeList#(n____(V1, V2)) → isList#(activate(V1))isList#(n____(V1, V2)) → isList#(activate(V1))

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

isList#(n____(V1, V2))U21#(isList(activate(V1)), activate(V2))isNeList#(n____(V1, V2))U51#(isNeList(activate(V1)), activate(V2))
U21#(tt, V2)isList#(activate(V2))U51#(tt, V2)isList#(activate(V2))
isNeList#(n____(V1, V2))isNeList#(activate(V1))isList#(V)isNeList#(activate(V))
isNeList#(n____(V1, V2))isList#(activate(V1))isList#(n____(V1, V2))isList#(activate(V1))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, n__o, U42, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U52, U81, U11, U31, isQid, n____, nil

Strategy


Polynomial Interpretation

Standard Usable rules

__(__(X, Y), Z)__(X, __(Y, Z))U51(tt, V2)U52(isList(activate(V2)))
__(X, nil)Xan__a
U31(tt)ttactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isQid(n__u)tt
isList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))isQid(n__e)tt
U41(tt, V2)U42(isNeList(activate(V2)))isList(V)U11(isNeList(activate(V)))
__(X1, X2)n____(X1, X2)U22(tt)tt
activate(n__a)aU11(tt)tt
en__eactivate(n__i)i
isList(n__nil)ttisQid(n__a)tt
isQid(n__i)ttU42(tt)tt
U21(tt, V2)U22(isList(activate(V2)))isNeList(V)U31(isQid(activate(V)))
activate(X)Xactivate(n__u)u
__(nil, X)Xin__i
un__uactivate(n__o)o
niln__nilon__o
isQid(n__o)ttU52(tt)tt
activate(n__e)e

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

isList#(n____(V1, V2))U21#(isList(activate(V1)), activate(V2))U51#(tt, V2)isList#(activate(V2))
isNeList#(n____(V1, V2))isNeList#(activate(V1))isList#(n____(V1, V2))isList#(activate(V1))
isNeList#(n____(V1, V2))isList#(activate(V1))

Problem 9: DependencyGraph



Dependency Pair Problem

Dependency Pairs

isNeList#(n____(V1, V2))U51#(isNeList(activate(V1)), activate(V2))U21#(tt, V2)isList#(activate(V2))
isList#(V)isNeList#(activate(V))

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


There are no SCCs!

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

__#(__(X, Y), Z)__#(X, __(Y, Z))__#(__(X, Y), Z)__#(Y, Z)

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

__#(__(X, Y), Z)__#(X, __(Y, Z))__#(__(X, Y), Z)__#(Y, Z)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n____(X1, X2))activate#(X1)activate#(n____(X1, X2))activate#(X2)

Rewrite Rules

__(__(X, Y), Z)__(X, __(Y, Z))__(X, nil)X
__(nil, X)XU11(tt)tt
U21(tt, V2)U22(isList(activate(V2)))U22(tt)tt
U31(tt)ttU41(tt, V2)U42(isNeList(activate(V2)))
U42(tt)ttU51(tt, V2)U52(isList(activate(V2)))
U52(tt)ttU61(tt)tt
U71(tt, P)U72(isPal(activate(P)))U72(tt)tt
U81(tt)ttisList(V)U11(isNeList(activate(V)))
isList(n__nil)ttisList(n____(V1, V2))U21(isList(activate(V1)), activate(V2))
isNeList(V)U31(isQid(activate(V)))isNeList(n____(V1, V2))U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2))U51(isNeList(activate(V1)), activate(V2))isNePal(V)U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I)))U71(isQid(activate(I)), activate(P))isPal(V)U81(isNePal(activate(V)))
isPal(n__nil)ttisQid(n__a)tt
isQid(n__e)ttisQid(n__i)tt
isQid(n__o)ttisQid(n__u)tt
niln__nil__(X1, X2)n____(X1, X2)
an__aen__e
in__ion__o
un__uactivate(n__nil)nil
activate(n____(X1, X2))__(activate(X1), activate(X2))activate(n__a)a
activate(n__e)eactivate(n__i)i
activate(n__o)oactivate(n__u)u
activate(X)X

Original Signature

Termination of terms over the following signature is verified: isList, isNeList, __, activate, n__u, U61, U42, n__o, U41, isNePal, n__nil, U21, U22, n__e, e, n__a, a, o, isPal, n__i, i, U71, U72, u, U51, tt, U81, U52, U11, isQid, U31, n____, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n____(X1, X2))activate#(X1)activate#(n____(X1, X2))activate#(X2)