TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1254ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 10 was processed with processor PolynomialLinearRange4iUR (120ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (3539ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (2812ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (timeout), PolynomialLinearRange8NegiUR (-6ms), ReductionPairSAT (3915ms), DependencyGraph (2ms), SizeChangePrinciple (timeout)].
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (0ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, top, cons, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(cons(X1, X2))proper#(X1)take#(mark(X1), X2)take#(X1, X2)
proper#(length(X))length#(proper(X))top#(ok(X))top#(active(X))
cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)
and#(ok(X1), ok(X2))and#(X1, X2)proper#(and(X1, X2))proper#(X1)
proper#(and(X1, X2))and#(proper(X1), proper(X2))top#(ok(X))active#(X)
active#(cons(X1, X2))cons#(active(X1), X2)active#(take(X1, X2))take#(active(X1), X2)
active#(and(X1, X2))and#(active(X1), X2)proper#(and(X1, X2))proper#(X2)
proper#(take(X1, X2))proper#(X1)length#(ok(X))length#(X)
active#(take(s(M), cons(N, IL)))take#(M, IL)active#(take(s(M), cons(N, IL)))cons#(N, take(M, IL))
take#(ok(X1), ok(X2))take#(X1, X2)top#(mark(X))proper#(X)
length#(mark(X))length#(X)top#(mark(X))top#(proper(X))
active#(length(X))length#(active(X))proper#(cons(X1, X2))proper#(X2)
active#(take(X1, X2))active#(X2)active#(take(X1, X2))active#(X1)
active#(length(X))active#(X)proper#(take(X1, X2))proper#(X2)
take#(X1, mark(X2))take#(X1, X2)and#(mark(X1), X2)and#(X1, X2)
active#(s(X))s#(active(X))active#(length(cons(N, L)))s#(length(L))
active#(length(cons(N, L)))length#(L)s#(ok(X))s#(X)
s#(mark(X))s#(X)proper#(length(X))proper#(X)
proper#(s(X))proper#(X)proper#(cons(X1, X2))cons#(proper(X1), proper(X2))
active#(take(X1, X2))take#(X1, active(X2))active#(s(X))active#(X)
proper#(s(X))s#(proper(X))active#(zeros)cons#(0, zeros)
proper#(take(X1, X2))take#(proper(X1), proper(X2))active#(and(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


The following SCCs where found

active#(s(X)) → active#(X)active#(take(X1, X2)) → active#(X2)
active#(take(X1, X2)) → active#(X1)active#(length(X)) → active#(X)
active#(and(X1, X2)) → active#(X1)active#(cons(X1, X2)) → active#(X1)

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

length#(mark(X)) → length#(X)length#(ok(X)) → length#(X)

proper#(s(X)) → proper#(X)proper#(length(X)) → proper#(X)
proper#(cons(X1, X2)) → proper#(X1)proper#(cons(X1, X2)) → proper#(X2)
proper#(and(X1, X2)) → proper#(X2)proper#(take(X1, X2)) → proper#(X1)
proper#(take(X1, X2)) → proper#(X2)proper#(and(X1, X2)) → proper#(X1)

take#(mark(X1), X2) → take#(X1, X2)take#(X1, mark(X2)) → take#(X1, X2)
take#(ok(X1), ok(X2)) → take#(X1, X2)

and#(ok(X1), ok(X2)) → and#(X1, X2)and#(mark(X1), X2) → and#(X1, X2)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

take#(mark(X1), X2)take#(X1, X2)take#(X1, mark(X2))take#(X1, X2)
take#(ok(X1), ok(X2))take#(X1, X2)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

take#(mark(X1), X2)take#(X1, X2)take#(ok(X1), ok(X2))take#(X1, X2)

Problem 10: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

take#(X1, mark(X2))take#(X1, X2)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, cons, nil, top

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

take#(X1, mark(X2))take#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(length(X))proper#(X)
proper#(cons(X1, X2))proper#(X1)proper#(cons(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X2)proper#(take(X1, X2))proper#(X1)
proper#(take(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X1)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(length(X))proper#(X)proper#(s(X))proper#(X)
proper#(cons(X1, X2))proper#(X1)proper#(cons(X1, X2))proper#(X2)
proper#(and(X1, X2))proper#(X2)proper#(take(X1, X2))proper#(X1)
proper#(take(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X1)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

length#(mark(X))length#(X)length#(ok(X))length#(X)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

length#(mark(X))length#(X)length#(ok(X))length#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(s(X))active#(X)active#(take(X1, X2))active#(X2)
active#(take(X1, X2))active#(X1)active#(length(X))active#(X)
active#(and(X1, X2))active#(X1)active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(zeros)mark(cons(0, zeros))active(and(tt, X))mark(X)
active(length(nil))mark(0)active(length(cons(N, L)))mark(s(length(L)))
active(take(0, IL))mark(nil)active(take(s(M), cons(N, IL)))mark(cons(N, take(M, IL)))
active(cons(X1, X2))cons(active(X1), X2)active(and(X1, X2))and(active(X1), X2)
active(length(X))length(active(X))active(s(X))s(active(X))
active(take(X1, X2))take(active(X1), X2)active(take(X1, X2))take(X1, active(X2))
cons(mark(X1), X2)mark(cons(X1, X2))and(mark(X1), X2)mark(and(X1, X2))
length(mark(X))mark(length(X))s(mark(X))mark(s(X))
take(mark(X1), X2)mark(take(X1, X2))take(X1, mark(X2))mark(take(X1, X2))
proper(zeros)ok(zeros)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(0)ok(0)proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(length(X))length(proper(X))
proper(nil)ok(nil)proper(s(X))s(proper(X))
proper(take(X1, X2))take(proper(X1), proper(X2))cons(ok(X1), ok(X2))ok(cons(X1, X2))
and(ok(X1), ok(X2))ok(and(X1, X2))length(ok(X))ok(length(X))
s(ok(X))ok(s(X))take(ok(X1), ok(X2))ok(take(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, and, 0, s, zeros, tt, take, length, active, ok, proper, nil, top, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(s(X))active#(X)active#(take(X1, X2))active#(X2)
active#(length(X))active#(X)active#(take(X1, X2))active#(X1)
active#(and(X1, X2))active#(X1)active#(cons(X1, X2))active#(X1)