TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60004 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (165ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (982ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (724ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (6290ms), DependencyGraph (3ms), ReductionPairSAT (timeout)].
 | – Problem 3 was processed with processor PolynomialLinearRange4iUR (3101ms).
 |    | – Problem 4 was processed with processor DependencyGraph (21ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

length#(cons(N, L))U11#(tt, activate(L))U12#(tt, L)length#(activate(L))
U11#(tt, L)U12#(tt, activate(L))

Rewrite Rules

zeroscons(0, n__zeros)U11(tt, L)U12(tt, activate(L))
U12(tt, L)s(length(activate(L)))U21(tt, IL, M, N)U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N)U23(tt, activate(IL), activate(M), activate(N))U23(tt, IL, M, N)cons(activate(N), n__take(activate(M), activate(IL)))
length(nil)0length(cons(N, L))U11(tt, activate(L))
take(0, IL)niltake(s(M), cons(N, IL))U21(tt, activate(IL), M, N)
zerosn__zerostake(X1, X2)n__take(X1, X2)
activate(n__zeros)zerosactivate(n__take(X1, X2))take(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__take, activate, 0, s, zeros, tt, take, length, U11, U12, U23, n__zeros, U21, nil, cons, U22


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

take#(s(M), cons(N, IL))U21#(tt, activate(IL), M, N)U21#(tt, IL, M, N)U22#(tt, activate(IL), activate(M), activate(N))
activate#(n__zeros)zeros#length#(cons(N, L))U11#(tt, activate(L))
U12#(tt, L)activate#(L)U21#(tt, IL, M, N)activate#(N)
U22#(tt, IL, M, N)U23#(tt, activate(IL), activate(M), activate(N))U23#(tt, IL, M, N)activate#(N)
activate#(n__take(X1, X2))take#(activate(X1), activate(X2))U11#(tt, L)activate#(L)
U23#(tt, IL, M, N)activate#(M)U21#(tt, IL, M, N)activate#(IL)
U21#(tt, IL, M, N)activate#(M)U22#(tt, IL, M, N)activate#(N)
U22#(tt, IL, M, N)activate#(IL)activate#(n__take(X1, X2))activate#(X1)
U22#(tt, IL, M, N)activate#(M)U12#(tt, L)length#(activate(L))
take#(s(M), cons(N, IL))activate#(IL)activate#(n__take(X1, X2))activate#(X2)
U11#(tt, L)U12#(tt, activate(L))U23#(tt, IL, M, N)activate#(IL)
length#(cons(N, L))activate#(L)

Rewrite Rules

zeroscons(0, n__zeros)U11(tt, L)U12(tt, activate(L))
U12(tt, L)s(length(activate(L)))U21(tt, IL, M, N)U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N)U23(tt, activate(IL), activate(M), activate(N))U23(tt, IL, M, N)cons(activate(N), n__take(activate(M), activate(IL)))
length(nil)0length(cons(N, L))U11(tt, activate(L))
take(0, IL)niltake(s(M), cons(N, IL))U21(tt, activate(IL), M, N)
zerosn__zerostake(X1, X2)n__take(X1, X2)
activate(n__zeros)zerosactivate(n__take(X1, X2))take(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__take, activate, 0, s, zeros, tt, take, length, U11, U12, U23, n__zeros, U21, U22, cons, nil

Strategy


The following SCCs where found

length#(cons(N, L)) → U11#(tt, activate(L))U12#(tt, L) → length#(activate(L))
U11#(tt, L) → U12#(tt, activate(L))

U21#(tt, IL, M, N) → U22#(tt, activate(IL), activate(M), activate(N))take#(s(M), cons(N, IL)) → U21#(tt, activate(IL), M, N)
U21#(tt, IL, M, N) → activate#(N)U23#(tt, IL, M, N) → activate#(N)
U22#(tt, IL, M, N) → U23#(tt, activate(IL), activate(M), activate(N))activate#(n__take(X1, X2)) → take#(activate(X1), activate(X2))
U23#(tt, IL, M, N) → activate#(M)U21#(tt, IL, M, N) → activate#(IL)
U21#(tt, IL, M, N) → activate#(M)U22#(tt, IL, M, N) → activate#(N)
U22#(tt, IL, M, N) → activate#(IL)activate#(n__take(X1, X2)) → activate#(X1)
U22#(tt, IL, M, N) → activate#(M)activate#(n__take(X1, X2)) → activate#(X2)
take#(s(M), cons(N, IL)) → activate#(IL)U23#(tt, IL, M, N) → activate#(IL)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

take#(s(M), cons(N, IL))U21#(tt, activate(IL), M, N)U21#(tt, IL, M, N)U22#(tt, activate(IL), activate(M), activate(N))
U21#(tt, IL, M, N)activate#(N)U22#(tt, IL, M, N)U23#(tt, activate(IL), activate(M), activate(N))
U23#(tt, IL, M, N)activate#(N)activate#(n__take(X1, X2))take#(activate(X1), activate(X2))
U23#(tt, IL, M, N)activate#(M)U21#(tt, IL, M, N)activate#(IL)
U21#(tt, IL, M, N)activate#(M)U22#(tt, IL, M, N)activate#(N)
U22#(tt, IL, M, N)activate#(IL)activate#(n__take(X1, X2))activate#(X1)
U22#(tt, IL, M, N)activate#(M)activate#(n__take(X1, X2))activate#(X2)
take#(s(M), cons(N, IL))activate#(IL)U23#(tt, IL, M, N)activate#(IL)

Rewrite Rules

zeroscons(0, n__zeros)U11(tt, L)U12(tt, activate(L))
U12(tt, L)s(length(activate(L)))U21(tt, IL, M, N)U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N)U23(tt, activate(IL), activate(M), activate(N))U23(tt, IL, M, N)cons(activate(N), n__take(activate(M), activate(IL)))
length(nil)0length(cons(N, L))U11(tt, activate(L))
take(0, IL)niltake(s(M), cons(N, IL))U21(tt, activate(IL), M, N)
zerosn__zerostake(X1, X2)n__take(X1, X2)
activate(n__zeros)zerosactivate(n__take(X1, X2))take(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__take, activate, 0, s, zeros, tt, take, length, U11, U12, U23, n__zeros, U21, U22, cons, nil

Strategy


Polynomial Interpretation

Improved Usable rules

activate(n__zeros)zerostake(X1, X2)n__take(X1, X2)
U23(tt, IL, M, N)cons(activate(N), n__take(activate(M), activate(IL)))take(0, IL)nil
zeroscons(0, n__zeros)activate(X)X
U22(tt, IL, M, N)U23(tt, activate(IL), activate(M), activate(N))U21(tt, IL, M, N)U22(tt, activate(IL), activate(M), activate(N))
take(s(M), cons(N, IL))U21(tt, activate(IL), M, N)activate(n__take(X1, X2))take(activate(X1), activate(X2))
zerosn__zeros

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

take#(s(M), cons(N, IL))U21#(tt, activate(IL), M, N)activate#(n__take(X1, X2))take#(activate(X1), activate(X2))
activate#(n__take(X1, X2))activate#(X1)take#(s(M), cons(N, IL))activate#(IL)
activate#(n__take(X1, X2))activate#(X2)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U21#(tt, IL, M, N)activate#(IL)U21#(tt, IL, M, N)U22#(tt, activate(IL), activate(M), activate(N))
U21#(tt, IL, M, N)activate#(M)U22#(tt, IL, M, N)activate#(N)
U21#(tt, IL, M, N)activate#(N)U22#(tt, IL, M, N)activate#(IL)
U23#(tt, IL, M, N)activate#(N)U22#(tt, IL, M, N)U23#(tt, activate(IL), activate(M), activate(N))
U22#(tt, IL, M, N)activate#(M)U23#(tt, IL, M, N)activate#(IL)
U23#(tt, IL, M, N)activate#(M)

Rewrite Rules

zeroscons(0, n__zeros)U11(tt, L)U12(tt, activate(L))
U12(tt, L)s(length(activate(L)))U21(tt, IL, M, N)U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N)U23(tt, activate(IL), activate(M), activate(N))U23(tt, IL, M, N)cons(activate(N), n__take(activate(M), activate(IL)))
length(nil)0length(cons(N, L))U11(tt, activate(L))
take(0, IL)niltake(s(M), cons(N, IL))U21(tt, activate(IL), M, N)
zerosn__zerostake(X1, X2)n__take(X1, X2)
activate(n__zeros)zerosactivate(n__take(X1, X2))take(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__take, activate, 0, s, zeros, tt, take, length, U11, U12, U23, n__zeros, U21, nil, cons, U22

Strategy


There are no SCCs!