TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60005 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1127ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (901ms), PolynomialLinearRange4iUR (timeout), DependencyGraph (683ms), PolynomialLinearRange8NegiUR (timeout), PolynomialLinearRange8NegiUR (-2ms), ReductionPairSAT (timeout)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(U31(X1, X2, X3, X4))mark#(X1)
mark#(isNat(X))a__isNat#(X)mark#(take(X1, X2))mark#(X1)
mark#(isNatIList(X))a__isNatIList#(X)a__isNatList#(take(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__isNat#(s(V1))a__isNat#(V1)mark#(U21(X))mark#(X)
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))mark#(length(X))a__length#(mark(X))
a__take#(s(M), cons(N, IL))a__isNatIList#(IL)a__isNatIList#(V)a__isNatList#(V)
a__U11#(tt, L)mark#(L)a__and#(tt, X)mark#(X)
mark#(U31(X1, X2, X3, X4))a__U31#(mark(X1), X2, X3, X4)mark#(length(X))mark#(X)
mark#(s(X))mark#(X)a__length#(cons(N, L))a__isNatList#(L)
a__take#(0, IL)a__isNatIList#(IL)a__isNatList#(cons(V1, V2))a__isNat#(V1)
a__take#(s(M), cons(N, IL))a__U31#(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)a__U11#(tt, L)a__length#(mark(L))
a__isNatList#(take(V1, V2))a__isNat#(V1)mark#(cons(X1, X2))mark#(X1)
a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))a__isNat#(length(V1))a__isNatList#(V1)
a__take#(s(M), cons(N, IL))a__and#(a__isNatIList(IL), and(isNat(M), isNat(N)))mark#(isNatList(X))a__isNatList#(X)
mark#(and(X1, X2))mark#(X1)a__isNatIList#(cons(V1, V2))a__isNat#(V1)
mark#(and(X1, X2))a__and#(mark(X1), X2)mark#(take(X1, X2))a__take#(mark(X1), mark(X2))
mark#(U11(X1, X2))a__U11#(mark(X1), X2)mark#(take(X1, X2))mark#(X2)
a__U31#(tt, IL, M, N)mark#(N)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__U21(tt)nila__U31(tt, IL, M, N)cons(mark(N), take(M, IL))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__isNatList(take(V1, V2))a__and(a__isNat(V1), isNatIList(V2))
a__length(nil)0a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL)a__U21(a__isNatIList(IL))a__take(s(M), cons(N, IL))a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros)a__zerosmark(U11(X1, X2))a__U11(mark(X1), X2)
mark(length(X))a__length(mark(X))mark(U21(X))a__U21(mark(X))
mark(U31(X1, X2, X3, X4))a__U31(mark(X1), X2, X3, X4)mark(take(X1, X2))a__take(mark(X1), mark(X2))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__U21(X)U21(X)a__U31(X1, X2, X3, X4)U31(X1, X2, X3, X4)
a__take(X1, X2)take(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)a__isNatList(X)isNatList(X)
a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__take, a__and, isNat, a__isNatList, length, a__U21, U21, cons, a__zeros, isNatIList, a__length, mark, and, 0, s, a__isNatIList, isNatList, tt, zeros, take, a__isNat, a__U31, U11, U31, a__U11, nil


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(U31(X1, X2, X3, X4))mark#(X1)
mark#(take(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
mark#(isNatIList(X))a__isNatIList#(X)mark#(zeros)a__zeros#
a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__isNatList#(take(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))a__isNat#(s(V1))a__isNat#(V1)
mark#(U21(X))mark#(X)mark#(length(X))a__length#(mark(X))
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))a__take#(s(M), cons(N, IL))a__isNatIList#(IL)
a__isNatIList#(V)a__isNatList#(V)a__U11#(tt, L)mark#(L)
a__and#(tt, X)mark#(X)mark#(U21(X))a__U21#(mark(X))
mark#(U31(X1, X2, X3, X4))a__U31#(mark(X1), X2, X3, X4)mark#(length(X))mark#(X)
mark#(s(X))mark#(X)a__length#(cons(N, L))a__isNatList#(L)
a__take#(0, IL)a__isNatIList#(IL)a__take#(0, IL)a__U21#(a__isNatIList(IL))
a__isNatList#(cons(V1, V2))a__isNat#(V1)a__take#(s(M), cons(N, IL))a__U31#(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__U11#(tt, L)a__length#(mark(L))a__isNatList#(take(V1, V2))a__isNat#(V1)
mark#(cons(X1, X2))mark#(X1)a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))
a__take#(s(M), cons(N, IL))a__and#(a__isNatIList(IL), and(isNat(M), isNat(N)))a__isNat#(length(V1))a__isNatList#(V1)
mark#(isNatList(X))a__isNatList#(X)mark#(and(X1, X2))mark#(X1)
a__isNatIList#(cons(V1, V2))a__isNat#(V1)mark#(and(X1, X2))a__and#(mark(X1), X2)
mark#(take(X1, X2))a__take#(mark(X1), mark(X2))mark#(U11(X1, X2))a__U11#(mark(X1), X2)
mark#(take(X1, X2))mark#(X2)a__U31#(tt, IL, M, N)mark#(N)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__U21(tt)nila__U31(tt, IL, M, N)cons(mark(N), take(M, IL))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__isNatList(take(V1, V2))a__and(a__isNat(V1), isNatIList(V2))
a__length(nil)0a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL)a__U21(a__isNatIList(IL))a__take(s(M), cons(N, IL))a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros)a__zerosmark(U11(X1, X2))a__U11(mark(X1), X2)
mark(length(X))a__length(mark(X))mark(U21(X))a__U21(mark(X))
mark(U31(X1, X2, X3, X4))a__U31(mark(X1), X2, X3, X4)mark(take(X1, X2))a__take(mark(X1), mark(X2))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__U21(X)U21(X)a__U31(X1, X2, X3, X4)U31(X1, X2, X3, X4)
a__take(X1, X2)take(X1, X2)a__and(X1, X2)and(X1, X2)
a__isNat(X)isNat(X)a__isNatList(X)isNatList(X)
a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__take, a__and, isNat, a__isNatList, length, U21, a__U21, cons, a__zeros, isNatIList, a__length, mark, and, 0, s, a__isNatIList, isNatList, tt, zeros, take, a__isNat, a__U31, U11, U31, a__U11, nil

Strategy


The following SCCs where found

mark#(U11(X1, X2)) → mark#(X1)mark#(take(X1, X2)) → mark#(X1)
mark#(isNat(X)) → a__isNat#(X)mark#(U31(X1, X2, X3, X4)) → mark#(X1)
mark#(isNatIList(X)) → a__isNatIList#(X)a__length#(cons(N, L)) → a__U11#(a__and(a__isNatList(L), isNat(N)), L)
a__isNatList#(take(V1, V2)) → a__and#(a__isNat(V1), isNatIList(V2))a__isNatIList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatIList(V2))
a__isNat#(s(V1)) → a__isNat#(V1)mark#(U21(X)) → mark#(X)
mark#(length(X)) → a__length#(mark(X))a__isNatList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatList(V2))
a__take#(s(M), cons(N, IL)) → a__isNatIList#(IL)a__isNatIList#(V) → a__isNatList#(V)
a__U11#(tt, L) → mark#(L)a__and#(tt, X) → mark#(X)
mark#(U31(X1, X2, X3, X4)) → a__U31#(mark(X1), X2, X3, X4)mark#(length(X)) → mark#(X)
mark#(s(X)) → mark#(X)a__length#(cons(N, L)) → a__isNatList#(L)
a__take#(0, IL) → a__isNatIList#(IL)a__isNatList#(cons(V1, V2)) → a__isNat#(V1)
a__take#(s(M), cons(N, IL)) → a__U31#(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)a__U11#(tt, L) → a__length#(mark(L))
a__isNatList#(take(V1, V2)) → a__isNat#(V1)mark#(cons(X1, X2)) → mark#(X1)
a__length#(cons(N, L)) → a__and#(a__isNatList(L), isNat(N))mark#(isNatList(X)) → a__isNatList#(X)
a__take#(s(M), cons(N, IL)) → a__and#(a__isNatIList(IL), and(isNat(M), isNat(N)))a__isNat#(length(V1)) → a__isNatList#(V1)
mark#(and(X1, X2)) → mark#(X1)a__isNatIList#(cons(V1, V2)) → a__isNat#(V1)
mark#(and(X1, X2)) → a__and#(mark(X1), X2)mark#(take(X1, X2)) → a__take#(mark(X1), mark(X2))
mark#(take(X1, X2)) → mark#(X2)mark#(U11(X1, X2)) → a__U11#(mark(X1), X2)
a__U31#(tt, IL, M, N) → mark#(N)