TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60023 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (5413ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 10 was processed with processor ReductionPairSAT (440ms).
 |    |    | – Problem 17 was processed with processor ReductionPairSAT (289ms).
 |    |    |    | – Problem 23 remains open; application of the following processors failed [].
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (450ms).
 |    |    | – Problem 18 remains open; application of the following processors failed [DependencyGraph (7ms)].
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (72ms).
 |    |    | – Problem 19 remains open; application of the following processors failed [DependencyGraph (1ms)].
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (409ms).
 |    |    | – Problem 20 remains open; application of the following processors failed [DependencyGraph (7ms)].
 | – Problem 6 was processed with processor ReductionPairSAT (19530ms).
 |    | – Problem 16 remains open; application of the following processors failed [DependencyGraph (515ms), ReductionPairSAT (timeout)].
 | – Problem 7 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 14 was processed with processor ReductionPairSAT (161ms).
 |    |    | – Problem 21 remains open; application of the following processors failed [DependencyGraph (2ms)].
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 15 was processed with processor ReductionPairSAT (410ms).
 |    |    | – Problem 22 remains open; application of the following processors failed [DependencyGraph (6ms)].

The following open problems remain:



Open Dependency Pair Problem 17

Dependency Pairs

U21#(X1, active(X2), X3)U21#(X1, X2, X3)U21#(X1, X2, mark(X3))U21#(X1, X2, X3)
U21#(X1, X2, active(X3))U21#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22




Open Dependency Pair Problem 16

Dependency Pairs

active#(U11(tt, M, N))mark#(U12(tt, M, N))active#(U22(tt, M, N))mark#(plus(x(N, M), N))
active#(U21(tt, M, N))mark#(U22(tt, M, N))mark#(tt)active#(tt)
active#(plus(N, s(M)))mark#(U11(tt, M, N))active#(U12(tt, M, N))mark#(s(plus(N, M)))
mark#(U11(X1, X2, X3))active#(U11(mark(X1), X2, X3))active#(x(N, s(M)))mark#(U21(tt, M, N))
mark#(plus(X1, X2))mark#(X2)mark#(U12(X1, X2, X3))active#(U12(mark(X1), X2, X3))
mark#(s(X))mark#(X)mark#(U12(X1, X2, X3))mark#(X1)
mark#(plus(X1, X2))active#(plus(mark(X1), mark(X2)))mark#(s(X))active#(s(mark(X)))
mark#(x(X1, X2))active#(x(mark(X1), mark(X2)))active#(plus(N, 0))mark#(N)
mark#(U22(X1, X2, X3))mark#(X1)mark#(U22(X1, X2, X3))active#(U22(mark(X1), X2, X3))
mark#(plus(X1, X2))mark#(X1)active#(x(N, 0))mark#(0)
mark#(x(X1, X2))mark#(X2)mark#(U21(X1, X2, X3))mark#(X1)
mark#(U21(X1, X2, X3))active#(U21(mark(X1), X2, X3))mark#(U11(X1, X2, X3))mark#(X1)
mark#(x(X1, X2))mark#(X1)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x




Open Dependency Pair Problem 19

Dependency Pairs

x#(X1, mark(X2))x#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22




Open Dependency Pair Problem 18

Dependency Pairs

U22#(X1, active(X2), X3)U22#(X1, X2, X3)U22#(X1, X2, mark(X3))U22#(X1, X2, X3)
U22#(X1, mark(X2), X3)U22#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22




Open Dependency Pair Problem 21

Dependency Pairs

plus#(X1, mark(X2))plus#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22




Open Dependency Pair Problem 20

Dependency Pairs

U12#(X1, active(X2), X3)U12#(X1, X2, X3)U12#(X1, X2, mark(X3))U12#(X1, X2, X3)
U12#(X1, mark(X2), X3)U12#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22




Open Dependency Pair Problem 22

Dependency Pairs

U11#(X1, X2, mark(X3))U11#(X1, X2, X3)U11#(X1, mark(X2), X3)U11#(X1, X2, X3)
U11#(X1, X2, active(X3))U11#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U22#(X1, active(X2), X3)U22#(X1, X2, X3)active#(x(N, s(M)))U21#(tt, M, N)
active#(U11(tt, M, N))mark#(U12(tt, M, N))active#(U21(tt, M, N))mark#(U22(tt, M, N))
U22#(mark(X1), X2, X3)U22#(X1, X2, X3)active#(plus(N, s(M)))mark#(U11(tt, M, N))
U21#(X1, X2, active(X3))U21#(X1, X2, X3)mark#(U11(X1, X2, X3))U11#(mark(X1), X2, X3)
x#(active(X1), X2)x#(X1, X2)U22#(X1, X2, mark(X3))U22#(X1, X2, X3)
mark#(s(X))s#(mark(X))mark#(U11(X1, X2, X3))active#(U11(mark(X1), X2, X3))
x#(X1, active(X2))x#(X1, X2)plus#(X1, mark(X2))plus#(X1, X2)
mark#(U12(X1, X2, X3))active#(U12(mark(X1), X2, X3))mark#(s(X))mark#(X)
x#(X1, mark(X2))x#(X1, X2)mark#(plus(X1, X2))active#(plus(mark(X1), mark(X2)))
U21#(X1, mark(X2), X3)U21#(X1, X2, X3)U12#(mark(X1), X2, X3)U12#(X1, X2, X3)
U11#(X1, active(X2), X3)U11#(X1, X2, X3)active#(plus(N, 0))mark#(N)
U11#(mark(X1), X2, X3)U11#(X1, X2, X3)U21#(mark(X1), X2, X3)U21#(X1, X2, X3)
active#(x(N, 0))mark#(0)mark#(plus(X1, X2))mark#(X1)
mark#(x(X1, X2))mark#(X2)U12#(X1, active(X2), X3)U12#(X1, X2, X3)
U21#(X1, active(X2), X3)U21#(X1, X2, X3)U21#(active(X1), X2, X3)U21#(X1, X2, X3)
U12#(X1, X2, mark(X3))U12#(X1, X2, X3)active#(U12(tt, M, N))s#(plus(N, M))
plus#(X1, active(X2))plus#(X1, X2)mark#(U21(X1, X2, X3))mark#(X1)
plus#(mark(X1), X2)plus#(X1, X2)mark#(U11(X1, X2, X3))mark#(X1)
plus#(active(X1), X2)plus#(X1, X2)mark#(tt)active#(tt)
active#(U22(tt, M, N))mark#(plus(x(N, M), N))U12#(X1, mark(X2), X3)U12#(X1, X2, X3)
active#(U12(tt, M, N))mark#(s(plus(N, M)))active#(x(N, s(M)))mark#(U21(tt, M, N))
x#(mark(X1), X2)x#(X1, X2)U11#(X1, X2, mark(X3))U11#(X1, X2, X3)
mark#(plus(X1, X2))mark#(X2)U12#(active(X1), X2, X3)U12#(X1, X2, X3)
mark#(U22(X1, X2, X3))U22#(mark(X1), X2, X3)U22#(active(X1), X2, X3)U22#(X1, X2, X3)
U11#(active(X1), X2, X3)U11#(X1, X2, X3)U21#(X1, X2, mark(X3))U21#(X1, X2, X3)
mark#(U12(X1, X2, X3))mark#(X1)U22#(X1, mark(X2), X3)U22#(X1, X2, X3)
mark#(0)active#(0)mark#(s(X))active#(s(mark(X)))
active#(U21(tt, M, N))U22#(tt, M, N)U12#(X1, X2, active(X3))U12#(X1, X2, X3)
mark#(x(X1, X2))active#(x(mark(X1), mark(X2)))active#(U22(tt, M, N))x#(N, M)
active#(U12(tt, M, N))plus#(N, M)mark#(U22(X1, X2, X3))mark#(X1)
mark#(plus(X1, X2))plus#(mark(X1), mark(X2))mark#(U22(X1, X2, X3))active#(U22(mark(X1), X2, X3))
mark#(U21(X1, X2, X3))U21#(mark(X1), X2, X3)mark#(U12(X1, X2, X3))U12#(mark(X1), X2, X3)
s#(mark(X))s#(X)active#(U22(tt, M, N))plus#(x(N, M), N)
active#(U11(tt, M, N))U12#(tt, M, N)U11#(X1, mark(X2), X3)U11#(X1, X2, X3)
U22#(X1, X2, active(X3))U22#(X1, X2, X3)active#(plus(N, s(M)))U11#(tt, M, N)
s#(active(X))s#(X)mark#(x(X1, X2))x#(mark(X1), mark(X2))
mark#(U21(X1, X2, X3))active#(U21(mark(X1), X2, X3))U11#(X1, X2, active(X3))U11#(X1, X2, X3)
mark#(x(X1, X2))mark#(X1)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


The following SCCs where found

x#(mark(X1), X2) → x#(X1, X2)x#(X1, active(X2)) → x#(X1, X2)
x#(X1, mark(X2)) → x#(X1, X2)x#(active(X1), X2) → x#(X1, X2)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

U22#(X1, active(X2), X3) → U22#(X1, X2, X3)U22#(active(X1), X2, X3) → U22#(X1, X2, X3)
U22#(mark(X1), X2, X3) → U22#(X1, X2, X3)U22#(X1, X2, active(X3)) → U22#(X1, X2, X3)
U22#(X1, X2, mark(X3)) → U22#(X1, X2, X3)U22#(X1, mark(X2), X3) → U22#(X1, X2, X3)

active#(U11(tt, M, N)) → mark#(U12(tt, M, N))active#(U22(tt, M, N)) → mark#(plus(x(N, M), N))
active#(U21(tt, M, N)) → mark#(U22(tt, M, N))mark#(tt) → active#(tt)
active#(plus(N, s(M))) → mark#(U11(tt, M, N))active#(U12(tt, M, N)) → mark#(s(plus(N, M)))
mark#(U11(X1, X2, X3)) → active#(U11(mark(X1), X2, X3))active#(x(N, s(M))) → mark#(U21(tt, M, N))
mark#(plus(X1, X2)) → mark#(X2)mark#(U12(X1, X2, X3)) → active#(U12(mark(X1), X2, X3))
mark#(s(X)) → mark#(X)mark#(U12(X1, X2, X3)) → mark#(X1)
mark#(plus(X1, X2)) → active#(plus(mark(X1), mark(X2)))mark#(0) → active#(0)
mark#(s(X)) → active#(s(mark(X)))mark#(x(X1, X2)) → active#(x(mark(X1), mark(X2)))
active#(plus(N, 0)) → mark#(N)mark#(U22(X1, X2, X3)) → mark#(X1)
mark#(U22(X1, X2, X3)) → active#(U22(mark(X1), X2, X3))active#(x(N, 0)) → mark#(0)
mark#(plus(X1, X2)) → mark#(X1)mark#(x(X1, X2)) → mark#(X2)
mark#(U21(X1, X2, X3)) → mark#(X1)mark#(U21(X1, X2, X3)) → active#(U21(mark(X1), X2, X3))
mark#(U11(X1, X2, X3)) → mark#(X1)mark#(x(X1, X2)) → mark#(X1)

U12#(X1, active(X2), X3) → U12#(X1, X2, X3)U12#(X1, X2, active(X3)) → U12#(X1, X2, X3)
U12#(mark(X1), X2, X3) → U12#(X1, X2, X3)U12#(X1, X2, mark(X3)) → U12#(X1, X2, X3)
U12#(active(X1), X2, X3) → U12#(X1, X2, X3)U12#(X1, mark(X2), X3) → U12#(X1, X2, X3)

plus#(X1, mark(X2)) → plus#(X1, X2)plus#(X1, active(X2)) → plus#(X1, X2)
plus#(mark(X1), X2) → plus#(X1, X2)plus#(active(X1), X2) → plus#(X1, X2)

U11#(X1, X2, mark(X3)) → U11#(X1, X2, X3)U11#(X1, active(X2), X3) → U11#(X1, X2, X3)
U11#(active(X1), X2, X3) → U11#(X1, X2, X3)U11#(X1, mark(X2), X3) → U11#(X1, X2, X3)
U11#(mark(X1), X2, X3) → U11#(X1, X2, X3)U11#(X1, X2, active(X3)) → U11#(X1, X2, X3)

U21#(active(X1), X2, X3) → U21#(X1, X2, X3)U21#(X1, active(X2), X3) → U21#(X1, X2, X3)
U21#(X1, mark(X2), X3) → U21#(X1, X2, X3)U21#(X1, X2, mark(X3)) → U21#(X1, X2, X3)
U21#(X1, X2, active(X3)) → U21#(X1, X2, X3)U21#(mark(X1), X2, X3) → U21#(X1, X2, X3)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U21#(active(X1), X2, X3)U21#(X1, X2, X3)U21#(X1, active(X2), X3)U21#(X1, X2, X3)
U21#(X1, mark(X2), X3)U21#(X1, X2, X3)U21#(X1, X2, mark(X3))U21#(X1, X2, X3)
U21#(X1, X2, active(X3))U21#(X1, X2, X3)U21#(mark(X1), X2, X3)U21#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U21#(active(X1), X2, X3)U21#(X1, X2, X3)U21#(mark(X1), X2, X3)U21#(X1, X2, X3)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

U21#(X1, mark(X2), X3)U21#(X1, X2, X3)U21#(X1, active(X2), X3)U21#(X1, X2, X3)
U21#(X1, X2, mark(X3))U21#(X1, X2, X3)U21#(X1, X2, active(X3))U21#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

active = mark < plus = 0 = s = tt = U21# = U11 = U12 = U21 = x = U22

Argument Filtering

plus: all arguments are removed from plus
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U21#: collapses to 2
U11: 1 2 3
active: collapses to 1
mark: 1
U12: collapses to 2
U21: all arguments are removed from U21
x: all arguments are removed from x
U22: 2

Status

plus: multiset
0: multiset
s: multiset
tt: multiset
U11: lexicographic with permutation 1 → 2 2 → 1 3 → 3
mark: multiset
U21: multiset
x: multiset
U22: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

U21#(X1, mark(X2), X3) → U21#(X1, X2, X3)

Problem 17: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

U21#(X1, active(X2), X3)U21#(X1, X2, X3)U21#(X1, X2, mark(X3))U21#(X1, X2, X3)
U21#(X1, X2, active(X3))U21#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Function Precedence

active < plus = 0 = s = tt = U21# = U11 = mark = U12 = U21 = x = U22

Argument Filtering

plus: all arguments are removed from plus
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U21#: collapses to 3
U11: 3
active: 1
mark: collapses to 1
U12: 1
U21: all arguments are removed from U21
x: collapses to 2
U22: 3

Status

plus: multiset
0: multiset
s: multiset
tt: multiset
U11: lexicographic with permutation 3 → 1
active: multiset
U12: lexicographic with permutation 1 → 1
U21: multiset
U22: lexicographic with permutation 3 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

U21#(X1, X2, active(X3)) → U21#(X1, X2, X3)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U22#(X1, active(X2), X3)U22#(X1, X2, X3)U22#(active(X1), X2, X3)U22#(X1, X2, X3)
U22#(mark(X1), X2, X3)U22#(X1, X2, X3)U22#(X1, X2, active(X3))U22#(X1, X2, X3)
U22#(X1, X2, mark(X3))U22#(X1, X2, X3)U22#(X1, mark(X2), X3)U22#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U22#(active(X1), X2, X3)U22#(X1, X2, X3)U22#(mark(X1), X2, X3)U22#(X1, X2, X3)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

U22#(X1, active(X2), X3)U22#(X1, X2, X3)U22#(X1, X2, active(X3))U22#(X1, X2, X3)
U22#(X1, X2, mark(X3))U22#(X1, X2, X3)U22#(X1, mark(X2), X3)U22#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

mark < plus = 0 = s = tt = U22# = U11 = active = U12 = U21 = x = U22

Argument Filtering

plus: all arguments are removed from plus
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
U22#: collapses to 3
U11: 1 2
active: 1
mark: collapses to 1
U12: 2
U21: 1 2 3
x: 2
U22: 2 3

Status

plus: multiset
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
U11: lexicographic with permutation 1 → 2 2 → 1
active: multiset
U12: lexicographic with permutation 2 → 1
U21: lexicographic with permutation 1 → 2 2 → 1 3 → 3
x: lexicographic with permutation 2 → 1
U22: lexicographic with permutation 2 → 1 3 → 2

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

U22#(X1, X2, active(X3)) → U22#(X1, X2, X3)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

x#(mark(X1), X2)x#(X1, X2)x#(X1, active(X2))x#(X1, X2)
x#(X1, mark(X2))x#(X1, X2)x#(active(X1), X2)x#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

x#(mark(X1), X2)x#(X1, X2)x#(active(X1), X2)x#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

x#(X1, active(X2))x#(X1, X2)x#(X1, mark(X2))x#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

x# < active = mark < plus = 0 = s = tt = U11 = U12 = U21 = x = U22

Argument Filtering

plus: all arguments are removed from plus
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U11: all arguments are removed from U11
active: 1
mark: collapses to 1
U12: all arguments are removed from U12
x#: collapses to 2
U21: all arguments are removed from U21
x: 1 2
U22: all arguments are removed from U22

Status

plus: multiset
0: multiset
s: multiset
tt: multiset
U11: multiset
active: multiset
U12: multiset
U21: multiset
x: lexicographic with permutation 1 → 1 2 → 2
U22: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

x#(X1, active(X2)) → x#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U12#(X1, active(X2), X3)U12#(X1, X2, X3)U12#(X1, X2, active(X3))U12#(X1, X2, X3)
U12#(mark(X1), X2, X3)U12#(X1, X2, X3)U12#(X1, X2, mark(X3))U12#(X1, X2, X3)
U12#(active(X1), X2, X3)U12#(X1, X2, X3)U12#(X1, mark(X2), X3)U12#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U12#(active(X1), X2, X3)U12#(X1, X2, X3)U12#(mark(X1), X2, X3)U12#(X1, X2, X3)

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

U12#(X1, active(X2), X3)U12#(X1, X2, X3)U12#(X1, X2, active(X3))U12#(X1, X2, X3)
U12#(X1, X2, mark(X3))U12#(X1, X2, X3)U12#(X1, mark(X2), X3)U12#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

mark < plus = U12# = 0 = s = tt = U11 = active = U12 = U21 = x = U22

Argument Filtering

plus: 1
U12#: collapses to 3
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
U11: all arguments are removed from U11
active: 1
mark: collapses to 1
U12: collapses to 1
U21: 1 2 3
x: 1
U22: all arguments are removed from U22

Status

plus: lexicographic with permutation 1 → 1
0: multiset
tt: multiset
U11: multiset
active: multiset
U21: lexicographic with permutation 1 → 2 2 → 3 3 → 1
x: lexicographic with permutation 1 → 1
U22: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

U12#(X1, X2, active(X3)) → U12#(X1, X2, X3)

Problem 6: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

active#(U11(tt, M, N))mark#(U12(tt, M, N))active#(U22(tt, M, N))mark#(plus(x(N, M), N))
active#(U21(tt, M, N))mark#(U22(tt, M, N))mark#(tt)active#(tt)
active#(plus(N, s(M)))mark#(U11(tt, M, N))active#(U12(tt, M, N))mark#(s(plus(N, M)))
mark#(U11(X1, X2, X3))active#(U11(mark(X1), X2, X3))active#(x(N, s(M)))mark#(U21(tt, M, N))
mark#(plus(X1, X2))mark#(X2)mark#(U12(X1, X2, X3))active#(U12(mark(X1), X2, X3))
mark#(s(X))mark#(X)mark#(U12(X1, X2, X3))mark#(X1)
mark#(0)active#(0)mark#(plus(X1, X2))active#(plus(mark(X1), mark(X2)))
mark#(s(X))active#(s(mark(X)))mark#(x(X1, X2))active#(x(mark(X1), mark(X2)))
active#(plus(N, 0))mark#(N)mark#(U22(X1, X2, X3))mark#(X1)
mark#(U22(X1, X2, X3))active#(U22(mark(X1), X2, X3))mark#(plus(X1, X2))mark#(X1)
active#(x(N, 0))mark#(0)mark#(x(X1, X2))mark#(X2)
mark#(U21(X1, X2, X3))mark#(X1)mark#(U21(X1, X2, X3))active#(U21(mark(X1), X2, X3))
mark#(U11(X1, X2, X3))mark#(X1)mark#(x(X1, X2))mark#(X1)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Function Precedence

mark = active < plus = mark# = 0 = s = tt = U11 = U12 = active# = U21 = U22 = x

Argument Filtering

plus: all arguments are removed from plus
mark: all arguments are removed from mark
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U11: all arguments are removed from U11
active: all arguments are removed from active
U12: all arguments are removed from U12
active#: collapses to 1
U21: all arguments are removed from U21
U22: all arguments are removed from U22
x: all arguments are removed from x

Status

plus: multiset
mark: multiset
mark#: multiset
0: multiset
s: multiset
tt: multiset
U11: multiset
active: multiset
U12: multiset
U21: multiset
U22: multiset
x: multiset

Usable Rules

mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))U12(X1, active(X2), X3) → U12(X1, X2, X3)
active(x(N, 0)) → mark(0)U22(X1, active(X2), X3) → U22(X1, X2, X3)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))U22(X1, X2, active(X3)) → U22(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
plus(mark(X1), X2) → plus(X1, X2)U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)active(U22(tt, M, N)) → mark(plus(x(N, M), N))
plus(X1, active(X2)) → plus(X1, X2)U12(X1, mark(X2), X3) → U12(X1, X2, X3)
active(U11(tt, M, N)) → mark(U12(tt, M, N))U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)active(U21(tt, M, N)) → mark(U22(tt, M, N))
plus(active(X1), X2) → plus(X1, X2)x(mark(X1), X2) → x(X1, X2)
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)U21(active(X1), X2, X3) → U21(X1, X2, X3)
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))mark(s(X)) → active(s(mark(X)))
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
x(active(X1), X2) → x(X1, X2)active(x(N, s(M))) → mark(U21(tt, M, N))
U22(active(X1), X2, X3) → U22(X1, X2, X3)x(X1, active(X2)) → x(X1, X2)
s(active(X)) → s(X)mark(0) → active(0)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))U11(active(X1), X2, X3) → U11(X1, X2, X3)
plus(X1, mark(X2)) → plus(X1, X2)U21(X1, X2, active(X3)) → U21(X1, X2, X3)
active(U12(tt, M, N)) → mark(s(plus(N, M)))mark(tt) → active(tt)
U21(X1, active(X2), X3) → U21(X1, X2, X3)U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)x(X1, mark(X2)) → x(X1, X2)
active(plus(N, 0)) → mark(N)s(mark(X)) → s(X)
U12(active(X1), X2, X3) → U12(X1, X2, X3)U12(X1, X2, active(X3)) → U12(X1, X2, X3)
active(plus(N, s(M))) → mark(U11(tt, M, N))

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(0) → active#(0)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(X1, mark(X2))plus#(X1, X2)plus#(X1, active(X2))plus#(X1, X2)
plus#(mark(X1), X2)plus#(X1, X2)plus#(active(X1), X2)plus#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(mark(X1), X2)plus#(X1, X2)plus#(active(X1), X2)plus#(X1, X2)

Problem 14: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

plus#(X1, active(X2))plus#(X1, X2)plus#(X1, mark(X2))plus#(X1, X2)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

mark < active < plus = 0 = s = tt = U11 = plus# = U12 = U21 = x = U22

Argument Filtering

plus: collapses to 1
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U11: all arguments are removed from U11
active: 1
plus#: collapses to 2
mark: collapses to 1
U12: all arguments are removed from U12
U21: all arguments are removed from U21
x: all arguments are removed from x
U22: all arguments are removed from U22

Status

0: multiset
s: multiset
tt: multiset
U11: multiset
active: multiset
U12: multiset
U21: multiset
x: multiset
U22: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

plus#(X1, active(X2)) → plus#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

U11#(X1, X2, mark(X3))U11#(X1, X2, X3)U11#(X1, active(X2), X3)U11#(X1, X2, X3)
U11#(active(X1), X2, X3)U11#(X1, X2, X3)U11#(X1, mark(X2), X3)U11#(X1, X2, X3)
U11#(mark(X1), X2, X3)U11#(X1, X2, X3)U11#(X1, X2, active(X3))U11#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, U11, mark, U12, U21, U22, x

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

U11#(active(X1), X2, X3)U11#(X1, X2, X3)U11#(mark(X1), X2, X3)U11#(X1, X2, X3)

Problem 15: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

U11#(X1, X2, mark(X3))U11#(X1, X2, X3)U11#(X1, active(X2), X3)U11#(X1, X2, X3)
U11#(X1, mark(X2), X3)U11#(X1, X2, X3)U11#(X1, X2, active(X3))U11#(X1, X2, X3)

Rewrite Rules

active(U11(tt, M, N))mark(U12(tt, M, N))active(U12(tt, M, N))mark(s(plus(N, M)))
active(U21(tt, M, N))mark(U22(tt, M, N))active(U22(tt, M, N))mark(plus(x(N, M), N))
active(plus(N, 0))mark(N)active(plus(N, s(M)))mark(U11(tt, M, N))
active(x(N, 0))mark(0)active(x(N, s(M)))mark(U21(tt, M, N))
mark(U11(X1, X2, X3))active(U11(mark(X1), X2, X3))mark(tt)active(tt)
mark(U12(X1, X2, X3))active(U12(mark(X1), X2, X3))mark(s(X))active(s(mark(X)))
mark(plus(X1, X2))active(plus(mark(X1), mark(X2)))mark(U21(X1, X2, X3))active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3))active(U22(mark(X1), X2, X3))mark(x(X1, X2))active(x(mark(X1), mark(X2)))
mark(0)active(0)U11(mark(X1), X2, X3)U11(X1, X2, X3)
U11(X1, mark(X2), X3)U11(X1, X2, X3)U11(X1, X2, mark(X3))U11(X1, X2, X3)
U11(active(X1), X2, X3)U11(X1, X2, X3)U11(X1, active(X2), X3)U11(X1, X2, X3)
U11(X1, X2, active(X3))U11(X1, X2, X3)U12(mark(X1), X2, X3)U12(X1, X2, X3)
U12(X1, mark(X2), X3)U12(X1, X2, X3)U12(X1, X2, mark(X3))U12(X1, X2, X3)
U12(active(X1), X2, X3)U12(X1, X2, X3)U12(X1, active(X2), X3)U12(X1, X2, X3)
U12(X1, X2, active(X3))U12(X1, X2, X3)s(mark(X))s(X)
s(active(X))s(X)plus(mark(X1), X2)plus(X1, X2)
plus(X1, mark(X2))plus(X1, X2)plus(active(X1), X2)plus(X1, X2)
plus(X1, active(X2))plus(X1, X2)U21(mark(X1), X2, X3)U21(X1, X2, X3)
U21(X1, mark(X2), X3)U21(X1, X2, X3)U21(X1, X2, mark(X3))U21(X1, X2, X3)
U21(active(X1), X2, X3)U21(X1, X2, X3)U21(X1, active(X2), X3)U21(X1, X2, X3)
U21(X1, X2, active(X3))U21(X1, X2, X3)U22(mark(X1), X2, X3)U22(X1, X2, X3)
U22(X1, mark(X2), X3)U22(X1, X2, X3)U22(X1, X2, mark(X3))U22(X1, X2, X3)
U22(active(X1), X2, X3)U22(X1, X2, X3)U22(X1, active(X2), X3)U22(X1, X2, X3)
U22(X1, X2, active(X3))U22(X1, X2, X3)x(mark(X1), X2)x(X1, X2)
x(X1, mark(X2))x(X1, X2)x(active(X1), X2)x(X1, X2)
x(X1, active(X2))x(X1, X2)

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, U11, active, U12, mark, U21, x, U22

Strategy


Function Precedence

active = mark < plus = U11# = 0 = s = tt = U11 = U12 = U21 = x = U22

Argument Filtering

plus: 1 2
U11#: collapses to 2
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
U11: all arguments are removed from U11
active: 1
mark: collapses to 1
U12: 2 3
U21: collapses to 1
x: all arguments are removed from x
U22: collapses to 1

Status

plus: lexicographic with permutation 1 → 2 2 → 1
0: multiset
tt: multiset
U11: multiset
active: multiset
U12: lexicographic with permutation 2 → 2 3 → 1
x: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

U11#(X1, active(X2), X3) → U11#(X1, X2, X3)