YES
The TRS could be proven terminating. The proof took 52621 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (433ms).
| Problem 2 was processed with processor SubtermCriterion (37ms).
| | Problem 7 was processed with processor SubtermCriterion (0ms).
| Problem 3 was processed with processor PolynomialLinearRange4 (187ms).
| | Problem 10 was processed with processor ReductionPairSAT (2742ms).
| | | Problem 11 was processed with processor ReductionPairSAT (1390ms).
| | | | Problem 12 was processed with processor ReductionPairSAT (2660ms).
| | | | | Problem 13 was processed with processor ReductionPairSAT (2403ms).
| | | | | | Problem 14 was processed with processor ReductionPairSAT (905ms).
| | | | | | | Problem 15 was processed with processor ReductionPairSAT (1249ms).
| | | | | | | | Problem 16 was processed with processor DependencyGraph (4ms).
| | | | | | | | | Problem 17 was processed with processor ReductionPairSAT (19ms).
| | | | | | | | | | Problem 18 was processed with processor ReductionPairSAT (10ms).
| | | | | | | | | | | Problem 19 was processed with processor ReductionPairSAT (7ms).
| Problem 4 was processed with processor SubtermCriterion (0ms).
| Problem 5 was processed with processor SubtermCriterion (1ms).
| | Problem 8 was processed with processor SubtermCriterion (1ms).
| Problem 6 was processed with processor SubtermCriterion (0ms).
| | Problem 9 was processed with processor SubtermCriterion (0ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
and#(active(X1), X2) | → | and#(X1, X2) | | active#(x(N, s(M))) | → | plus#(x(N, M), N) |
and#(X1, active(X2)) | → | and#(X1, X2) | | mark#(tt) | → | active#(tt) |
x#(active(X1), X2) | → | x#(X1, X2) | | mark#(s(X)) | → | s#(mark(X)) |
active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) | | x#(mark(X1), X2) | → | x#(X1, X2) |
x#(X1, active(X2)) | → | x#(X1, X2) | | mark#(plus(X1, X2)) | → | mark#(X2) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(s(X)) | → | mark#(X) | | x#(X1, mark(X2)) | → | x#(X1, X2) |
and#(X1, mark(X2)) | → | and#(X1, X2) | | active#(plus(N, s(M))) | → | plus#(N, M) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(0) | → | active#(0) |
mark#(s(X)) | → | active#(s(mark(X))) | | active#(x(N, s(M))) | → | x#(N, M) |
mark#(and(X1, X2)) | → | and#(mark(X1), X2) | | mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) |
active#(plus(N, 0)) | → | mark#(N) | | mark#(plus(X1, X2)) | → | plus#(mark(X1), mark(X2)) |
and#(mark(X1), X2) | → | and#(X1, X2) | | active#(and(tt, X)) | → | mark#(X) |
mark#(plus(X1, X2)) | → | mark#(X1) | | active#(x(N, 0)) | → | mark#(0) |
active#(plus(N, s(M))) | → | s#(plus(N, M)) | | mark#(and(X1, X2)) | → | mark#(X1) |
s#(mark(X)) | → | s#(X) | | mark#(x(X1, X2)) | → | mark#(X2) |
active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |
s#(active(X)) | → | s#(X) | | mark#(x(X1, X2)) | → | x#(mark(X1), mark(X2)) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | mark#(x(X1, X2)) | → | mark#(X1) |
plus#(active(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
The following SCCs where found
x#(X1, active(X2)) → x#(X1, X2) | x#(mark(X1), X2) → x#(X1, X2) |
x#(X1, mark(X2)) → x#(X1, X2) | x#(active(X1), X2) → x#(X1, X2) |
mark#(plus(X1, X2)) → active#(plus(mark(X1), mark(X2))) | mark#(s(X)) → active#(s(mark(X))) |
mark#(x(X1, X2)) → active#(x(mark(X1), mark(X2))) | active#(plus(N, 0)) → mark#(N) |
active#(and(tt, X)) → mark#(X) | active#(x(N, s(M))) → mark#(plus(x(N, M), N)) |
mark#(plus(X1, X2)) → mark#(X1) | mark#(and(X1, X2)) → mark#(X1) |
mark#(x(X1, X2)) → mark#(X2) | mark#(plus(X1, X2)) → mark#(X2) |
active#(plus(N, s(M))) → mark#(s(plus(N, M))) | mark#(and(X1, X2)) → active#(and(mark(X1), X2)) |
mark#(s(X)) → mark#(X) | mark#(x(X1, X2)) → mark#(X1) |
s#(mark(X)) → s#(X) | s#(active(X)) → s#(X) |
and#(active(X1), X2) → and#(X1, X2) | and#(X1, active(X2)) → and#(X1, X2) |
and#(mark(X1), X2) → and#(X1, X2) | and#(X1, mark(X2)) → and#(X1, X2) |
plus#(X1, active(X2)) → plus#(X1, X2) | plus#(X1, mark(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) | plus#(active(X1), X2) → plus#(X1, X2) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(active(X1), X2) | → | and#(X1, X2) | | and#(X1, active(X2)) | → | and#(X1, X2) |
and#(mark(X1), X2) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(active(X1), X2) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Problem 3: PolynomialLinearRange4
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(s(X)) | → | active#(s(mark(X))) |
mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) | | active#(plus(N, 0)) | → | mark#(N) |
active#(and(tt, X)) | → | mark#(X) | | active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) |
mark#(plus(X1, X2)) | → | mark#(X1) | | mark#(and(X1, X2)) | → | mark#(X1) |
mark#(x(X1, X2)) | → | mark#(X2) | | mark#(plus(X1, X2)) | → | mark#(X2) |
active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(s(X)) | → | mark#(X) | | mark#(x(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 0
- active#(x): x
- and(x,y): 1
- mark(x): 0
- mark#(x): 1
- plus(x,y): 1
- s(x): 0
- tt: 3
- x(x,y): 1
Standard Usable rules
active(x(N, 0)) | → | mark(0) | | mark(s(X)) | → | active(s(mark(X))) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
plus(mark(X1), X2) | → | plus(X1, X2) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
x(active(X1), X2) | → | x(X1, X2) | | x(X1, active(X2)) | → | x(X1, X2) |
mark(0) | → | active(0) | | s(active(X)) | → | s(X) |
plus(X1, active(X2)) | → | plus(X1, X2) | | plus(X1, mark(X2)) | → | plus(X1, X2) |
mark(tt) | → | active(tt) | | active(plus(N, s(M))) | → | mark(s(plus(N, M))) |
active(and(tt, X)) | → | mark(X) | | plus(active(X1), X2) | → | plus(X1, X2) |
and(mark(X1), X2) | → | and(X1, X2) | | x(X1, mark(X2)) | → | x(X1, X2) |
x(mark(X1), X2) | → | x(X1, X2) | | active(plus(N, 0)) | → | mark(N) |
s(mark(X)) | → | s(X) | | mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) | → | and(X1, X2) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
mark#(s(X)) | → | active#(s(mark(X))) |
Problem 10: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) |
active#(plus(N, 0)) | → | mark#(N) | | active#(and(tt, X)) | → | mark#(X) |
active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) | | mark#(plus(X1, X2)) | → | mark#(X1) |
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(x(X1, X2)) | → | mark#(X2) |
mark#(plus(X1, X2)) | → | mark#(X2) | | active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) | | mark#(s(X)) | → | mark#(X) |
mark#(x(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Function Precedence
0 = mark = active# < mark# = and < x < plus < active < s = tt
Argument Filtering
plus: 1 2
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
x: 1 2
and: 1 2
Status
plus: lexicographic with permutation 1 → 1 2 → 2
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
x: lexicographic with permutation 1 → 2 2 → 1
and: lexicographic with permutation 1 → 1 2 → 2
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
mark(0) → active(0) | s(active(X)) → s(X) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
and(mark(X1), X2) → and(X1, X2) | x(X1, mark(X2)) → x(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
active#(and(tt, X)) → mark#(X) |
Problem 11: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(x(X1, X2)) | → | mark#(X2) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) | | active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) |
active#(plus(N, 0)) | → | mark#(N) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), X2)) |
mark#(s(X)) | → | mark#(X) | | mark#(x(X1, X2)) | → | mark#(X1) |
active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) | | mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Function Precedence
s < plus = 0 = active = mark = active# = mark# = x < tt < and
Argument Filtering
plus: all arguments are removed from plus
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
x: all arguments are removed from x
and: all arguments are removed from and
Status
plus: multiset
0: multiset
s: multiset
tt: multiset
active: multiset
mark: multiset
mark#: multiset
x: multiset
and: multiset
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
mark(0) → active(0) | s(active(X)) → s(X) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
and(mark(X1), X2) → and(X1, X2) | x(X1, mark(X2)) → x(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(and(X1, X2)) → active#(and(mark(X1), X2)) |
Problem 12: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) |
mark#(x(X1, X2)) | → | mark#(X2) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) | | active#(plus(N, 0)) | → | mark#(N) |
active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) | | mark#(s(X)) | → | mark#(X) |
active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) | | mark#(x(X1, X2)) | → | mark#(X1) |
mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Function Precedence
0 = mark = and < active < x < plus = tt = active# = mark# < s
Argument Filtering
plus: 1 2
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: collapses to 1
mark: collapses to 1
active#: 1
mark#: 1
x: 1 2
and: 1 2
Status
plus: lexicographic with permutation 1 → 1 2 → 2
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
active#: multiset
mark#: multiset
x: lexicographic with permutation 1 → 1 2 → 2
and: lexicographic with permutation 1 → 1 2 → 2
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
s(active(X)) → s(X) | mark(0) → active(0) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
x(X1, mark(X2)) → x(X1, X2) | and(mark(X1), X2) → and(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
active#(plus(N, 0)) → mark#(N) |
Problem 13: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(x(X1, X2)) | → | mark#(X2) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) | | active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) |
mark#(s(X)) | → | mark#(X) | | mark#(x(X1, X2)) | → | mark#(X1) |
active#(x(N, s(M))) | → | mark#(plus(x(N, M), N)) | | mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Function Precedence
0 < x < mark# < plus = mark < tt < s = active = active# = and
Argument Filtering
plus: 1 2
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
x: 1 2
and: 1 2
Status
plus: lexicographic with permutation 1 → 2 2 → 1
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
x: lexicographic with permutation 1 → 2 2 → 1
and: lexicographic with permutation 1 → 2 2 → 1
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
s(active(X)) → s(X) | mark(0) → active(0) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
x(X1, mark(X2)) → x(X1, X2) | and(mark(X1), X2) → and(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
active#(x(N, s(M))) → mark#(plus(x(N, M), N)) |
Problem 14: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) |
mark#(x(X1, X2)) | → | mark#(X2) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(x(X1, X2)) | → | active#(x(mark(X1), mark(X2))) | | active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) |
mark#(s(X)) | → | mark#(X) | | mark#(x(X1, X2)) | → | mark#(X1) |
mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Function Precedence
s < plus = active# = mark# < 0 = tt = active = mark = x = and
Argument Filtering
plus: all arguments are removed from plus
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
x: all arguments are removed from x
and: all arguments are removed from and
Status
plus: multiset
0: multiset
s: multiset
tt: multiset
active: multiset
mark: multiset
mark#: multiset
x: multiset
and: multiset
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
s(active(X)) → s(X) | mark(0) → active(0) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
x(X1, mark(X2)) → x(X1, X2) | and(mark(X1), X2) → and(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(x(X1, X2)) → active#(x(mark(X1), mark(X2))) |
Problem 15: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(x(X1, X2)) | → | mark#(X2) |
mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) | | mark#(plus(X1, X2)) | → | mark#(X2) |
active#(plus(N, s(M))) | → | mark#(s(plus(N, M))) | | mark#(s(X)) | → | mark#(X) |
mark#(x(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Function Precedence
0 < x < plus = mark# < mark < s = tt = active = active# = and
Argument Filtering
plus: 1 2
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
x: 1 2
and: 1 2
Status
plus: lexicographic with permutation 1 → 1 2 → 2
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
x: lexicographic with permutation 1 → 2 2 → 1
and: lexicographic with permutation 1 → 2 2 → 1
Usable Rules
active(x(N, 0)) → mark(0) | mark(s(X)) → active(s(mark(X))) |
active(x(N, s(M))) → mark(plus(x(N, M), N)) | mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2))) |
and(active(X1), X2) → and(X1, X2) | and(X1, mark(X2)) → and(X1, X2) |
plus(mark(X1), X2) → plus(X1, X2) | mark(and(X1, X2)) → active(and(mark(X1), X2)) |
x(active(X1), X2) → x(X1, X2) | x(X1, active(X2)) → x(X1, X2) |
s(active(X)) → s(X) | mark(0) → active(0) |
plus(X1, active(X2)) → plus(X1, X2) | plus(X1, mark(X2)) → plus(X1, X2) |
mark(tt) → active(tt) | active(plus(N, s(M))) → mark(s(plus(N, M))) |
active(and(tt, X)) → mark(X) | plus(active(X1), X2) → plus(X1, X2) |
and(mark(X1), X2) → and(X1, X2) | x(X1, mark(X2)) → x(X1, X2) |
x(mark(X1), X2) → x(X1, X2) | active(plus(N, 0)) → mark(N) |
s(mark(X)) → s(X) | mark(x(X1, X2)) → active(x(mark(X1), mark(X2))) |
and(X1, active(X2)) → and(X1, X2) |
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
active#(plus(N, s(M))) → mark#(s(plus(N, M))) |
Problem 16: DependencyGraph
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | active#(plus(mark(X1), mark(X2))) |
mark#(x(X1, X2)) | → | mark#(X2) | | mark#(plus(X1, X2)) | → | mark#(X2) |
mark#(s(X)) | → | mark#(X) | | mark#(x(X1, X2)) | → | mark#(X1) |
mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
The following SCCs where found
mark#(and(X1, X2)) → mark#(X1) | mark#(x(X1, X2)) → mark#(X2) |
mark#(plus(X1, X2)) → mark#(X2) | mark#(s(X)) → mark#(X) |
mark#(x(X1, X2)) → mark#(X1) | mark#(plus(X1, X2)) → mark#(X1) |
Problem 17: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(x(X1, X2)) | → | mark#(X2) |
mark#(plus(X1, X2)) | → | mark#(X2) | | mark#(s(X)) | → | mark#(X) |
mark#(x(X1, X2)) | → | mark#(X1) | | mark#(plus(X1, X2)) | → | mark#(X1) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Function Precedence
and < s < plus = 0 = tt = active = mark = mark# = x
Argument Filtering
plus: 1 2
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
active: all arguments are removed from active
mark: all arguments are removed from mark
mark#: collapses to 1
x: 1 2
and: collapses to 1
Status
plus: multiset
0: multiset
tt: multiset
active: multiset
mark: multiset
x: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(x(X1, X2)) → mark#(X2) | mark#(plus(X1, X2)) → mark#(X2) |
mark#(x(X1, X2)) → mark#(X1) | mark#(plus(X1, X2)) → mark#(X1) |
Problem 18: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(s(X)) | → | mark#(X) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Function Precedence
s < plus = 0 = tt = active = mark = mark# = x = and
Argument Filtering
plus: all arguments are removed from plus
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
active: collapses to 1
mark: all arguments are removed from mark
mark#: 1
x: all arguments are removed from x
and: 1 2
Status
plus: multiset
0: multiset
tt: multiset
mark: multiset
mark#: lexicographic with permutation 1 → 1
x: multiset
and: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(and(X1, X2)) → mark#(X1) |
Problem 19: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Function Precedence
plus = 0 = s = tt = active = mark = mark# = x = and
Argument Filtering
plus: all arguments are removed from plus
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: all arguments are removed from active
mark: all arguments are removed from mark
mark#: 1
x: all arguments are removed from x
and: all arguments are removed from and
Status
plus: multiset
0: multiset
s: multiset
tt: multiset
active: multiset
mark: multiset
mark#: multiset
x: multiset
and: multiset
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, active(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(mark(X1), X2) | → | plus#(X1, X2) | | plus#(active(X1), X2) | → | plus#(X1, X2) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | plus#(X1, active(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(X1, active(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
x#(X1, active(X2)) | → | x#(X1, X2) | | x#(mark(X1), X2) | → | x#(X1, X2) |
x#(X1, mark(X2)) | → | x#(X1, X2) | | x#(active(X1), X2) | → | x#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, and, x
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
x#(mark(X1), X2) | → | x#(X1, X2) | | x#(active(X1), X2) | → | x#(X1, X2) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
x#(X1, active(X2)) | → | x#(X1, X2) | | x#(X1, mark(X2)) | → | x#(X1, X2) |
Rewrite Rules
active(and(tt, X)) | → | mark(X) | | active(plus(N, 0)) | → | mark(N) |
active(plus(N, s(M))) | → | mark(s(plus(N, M))) | | active(x(N, 0)) | → | mark(0) |
active(x(N, s(M))) | → | mark(plus(x(N, M), N)) | | mark(and(X1, X2)) | → | active(and(mark(X1), X2)) |
mark(tt) | → | active(tt) | | mark(plus(X1, X2)) | → | active(plus(mark(X1), mark(X2))) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(x(X1, X2)) | → | active(x(mark(X1), mark(X2))) | | and(mark(X1), X2) | → | and(X1, X2) |
and(X1, mark(X2)) | → | and(X1, X2) | | and(active(X1), X2) | → | and(X1, X2) |
and(X1, active(X2)) | → | and(X1, X2) | | plus(mark(X1), X2) | → | plus(X1, X2) |
plus(X1, mark(X2)) | → | plus(X1, X2) | | plus(active(X1), X2) | → | plus(X1, X2) |
plus(X1, active(X2)) | → | plus(X1, X2) | | s(mark(X)) | → | s(X) |
s(active(X)) | → | s(X) | | x(mark(X1), X2) | → | x(X1, X2) |
x(X1, mark(X2)) | → | x(X1, X2) | | x(active(X1), X2) | → | x(X1, X2) |
x(X1, active(X2)) | → | x(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, x, and
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
x#(X1, active(X2)) | → | x#(X1, X2) | | x#(X1, mark(X2)) | → | x#(X1, X2) |