YES

The TRS could be proven terminating. The proof took 22820 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (453ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 9 was processed with processor SubtermCriterion (0ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 10 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 was processed with processor SubtermCriterion (0ms).
 | – Problem 7 was processed with processor ReductionPairSAT (1013ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (839ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(x(N, s(M)))plus#(x(N, M), N)top#(ok(X))top#(active(X))
proper#(x(X1, X2))proper#(X1)and#(ok(X1), ok(X2))and#(X1, X2)
active#(x(X1, X2))x#(active(X1), X2)proper#(and(X1, X2))proper#(X1)
proper#(and(X1, X2))and#(proper(X1), proper(X2))top#(ok(X))active#(X)
x#(mark(X1), X2)x#(X1, X2)active#(and(X1, X2))and#(active(X1), X2)
proper#(and(X1, X2))proper#(X2)plus#(X1, mark(X2))plus#(X1, X2)
proper#(plus(X1, X2))proper#(X1)x#(ok(X1), ok(X2))x#(X1, X2)
proper#(x(X1, X2))x#(proper(X1), proper(X2))proper#(plus(X1, X2))proper#(X2)
x#(X1, mark(X2))x#(X1, X2)top#(mark(X))proper#(X)
proper#(plus(X1, X2))plus#(proper(X1), proper(X2))active#(plus(N, s(M)))plus#(N, M)
plus#(ok(X1), ok(X2))plus#(X1, X2)top#(mark(X))top#(proper(X))
active#(x(N, s(M)))x#(N, M)active#(x(X1, X2))active#(X1)
and#(mark(X1), X2)and#(X1, X2)active#(s(X))s#(active(X))
active#(x(X1, X2))x#(X1, active(X2))proper#(x(X1, X2))proper#(X2)
s#(ok(X))s#(X)s#(mark(X))s#(X)
active#(plus(N, s(M)))s#(plus(N, M))active#(plus(X1, X2))plus#(X1, active(X2))
proper#(s(X))proper#(X)active#(plus(X1, X2))active#(X1)
active#(plus(X1, X2))plus#(active(X1), X2)active#(s(X))active#(X)
proper#(s(X))s#(proper(X))active#(x(X1, X2))active#(X2)
active#(plus(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)
plus#(mark(X1), X2)plus#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


The following SCCs where found

plus#(ok(X1), ok(X2)) → plus#(X1, X2)plus#(X1, mark(X2)) → plus#(X1, X2)
plus#(mark(X1), X2) → plus#(X1, X2)

x#(mark(X1), X2) → x#(X1, X2)x#(ok(X1), ok(X2)) → x#(X1, X2)
x#(X1, mark(X2)) → x#(X1, X2)

active#(plus(X1, X2)) → active#(X1)active#(s(X)) → active#(X)
active#(x(X1, X2)) → active#(X1)active#(x(X1, X2)) → active#(X2)
active#(plus(X1, X2)) → active#(X2)active#(and(X1, X2)) → active#(X1)

proper#(s(X)) → proper#(X)proper#(and(X1, X2)) → proper#(X2)
proper#(plus(X1, X2)) → proper#(X1)proper#(x(X1, X2)) → proper#(X1)
proper#(plus(X1, X2)) → proper#(X2)proper#(and(X1, X2)) → proper#(X1)
proper#(x(X1, X2)) → proper#(X2)

and#(ok(X1), ok(X2)) → and#(X1, X2)and#(mark(X1), X2) → and#(X1, X2)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(X1, mark(X2))plus#(X1, X2)
plus#(mark(X1), X2)plus#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(ok(X1), ok(X2))plus#(X1, X2)plus#(mark(X1), X2)plus#(X1, X2)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(X1, mark(X2))plus#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, ok, mark, proper, top, x, and

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(X1, mark(X2))plus#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(plus(X1, X2))active#(X1)active#(s(X))active#(X)
active#(x(X1, X2))active#(X1)active#(x(X1, X2))active#(X2)
active#(plus(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(plus(X1, X2))active#(X1)active#(s(X))active#(X)
active#(x(X1, X2))active#(X1)active#(x(X1, X2))active#(X2)
active#(plus(X1, X2))active#(X2)active#(and(X1, X2))active#(X1)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

x#(mark(X1), X2)x#(X1, X2)x#(ok(X1), ok(X2))x#(X1, X2)
x#(X1, mark(X2))x#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

x#(mark(X1), X2)x#(X1, X2)x#(ok(X1), ok(X2))x#(X1, X2)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

x#(X1, mark(X2))x#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, ok, mark, proper, top, x, and

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

x#(X1, mark(X2))x#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

and#(ok(X1), ok(X2))and#(X1, X2)and#(mark(X1), X2)and#(X1, X2)

Problem 7: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Function Precedence

tt < ok = and < x < plus = active < 0 = s = mark = proper = top = top#

Argument Filtering

plus: 1 2
0: all arguments are removed from 0
s: 1
tt: all arguments are removed from tt
active: collapses to 1
ok: collapses to 1
mark: 1
proper: collapses to 1
top: all arguments are removed from top
x: 1 2
and: 1 2
top#: collapses to 1

Status

plus: lexicographic with permutation 1 → 2 2 → 1
0: multiset
s: lexicographic with permutation 1 → 1
tt: multiset
mark: lexicographic with permutation 1 → 1
top: multiset
x: lexicographic with permutation 1 → 2 2 → 1
and: lexicographic with permutation 1 → 2 2 → 1

Usable Rules

active(plus(X1, X2)) → plus(X1, active(X2))plus(X1, mark(X2)) → mark(plus(X1, X2))
active(plus(X1, X2)) → plus(active(X1), X2)active(s(X)) → s(active(X))
active(x(N, 0)) → mark(0)and(ok(X1), ok(X2)) → ok(and(X1, X2))
active(x(N, s(M))) → mark(plus(x(N, M), N))plus(mark(X1), X2) → mark(plus(X1, X2))
active(x(X1, X2)) → x(X1, active(X2))proper(and(X1, X2)) → and(proper(X1), proper(X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))s(mark(X)) → mark(s(X))
proper(s(X)) → s(proper(X))active(and(X1, X2)) → and(active(X1), X2)
proper(x(X1, X2)) → x(proper(X1), proper(X2))proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))proper(tt) → ok(tt)
active(x(X1, X2)) → x(active(X1), X2)active(plus(N, s(M))) → mark(s(plus(N, M)))
x(mark(X1), X2) → mark(x(X1, X2))active(and(tt, X)) → mark(X)
x(X1, mark(X2)) → mark(x(X1, X2))active(plus(N, 0)) → mark(N)
and(mark(X1), X2) → mark(and(X1, X2))proper(0) → ok(0)
x(ok(X1), ok(X2)) → ok(x(X1, X2))

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

top#(mark(X)) → top#(proper(X))

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

top#(ok(X))top#(active(X))

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, ok, mark, proper, top, x, and

Strategy


Function Precedence

x = top# < plus = 0 = s = tt = and < active = mark < ok = proper = top

Argument Filtering

plus: collapses to 1
0: all arguments are removed from 0
s: collapses to 1
tt: all arguments are removed from tt
active: collapses to 1
ok: 1
mark: collapses to 1
proper: collapses to 1
top: all arguments are removed from top
x: collapses to 2
and: collapses to 2
top#: collapses to 1

Status

0: multiset
tt: multiset
ok: lexicographic with permutation 1 → 1
top: multiset

Usable Rules

active(plus(X1, X2)) → plus(X1, active(X2))plus(X1, mark(X2)) → mark(plus(X1, X2))
active(plus(X1, X2)) → plus(active(X1), X2)active(x(N, 0)) → mark(0)
active(s(X)) → s(active(X))and(ok(X1), ok(X2)) → ok(and(X1, X2))
s(ok(X)) → ok(s(X))active(x(N, s(M))) → mark(plus(x(N, M), N))
plus(mark(X1), X2) → mark(plus(X1, X2))active(x(X1, X2)) → x(active(X1), X2)
active(plus(N, s(M))) → mark(s(plus(N, M)))x(mark(X1), X2) → mark(x(X1, X2))
active(x(X1, X2)) → x(X1, active(X2))active(and(tt, X)) → mark(X)
s(mark(X)) → mark(s(X))x(X1, mark(X2)) → mark(x(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))active(plus(N, 0)) → mark(N)
and(mark(X1), X2) → mark(and(X1, X2))x(ok(X1), ok(X2)) → ok(x(X1, X2))
active(and(X1, X2)) → and(active(X1), X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

top#(ok(X)) → top#(active(X))

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(s(X))proper#(X)proper#(and(X1, X2))proper#(X2)
proper#(plus(X1, X2))proper#(X1)proper#(x(X1, X2))proper#(X1)
proper#(plus(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X1)
proper#(x(X1, X2))proper#(X2)

Rewrite Rules

active(and(tt, X))mark(X)active(plus(N, 0))mark(N)
active(plus(N, s(M)))mark(s(plus(N, M)))active(x(N, 0))mark(0)
active(x(N, s(M)))mark(plus(x(N, M), N))active(and(X1, X2))and(active(X1), X2)
active(plus(X1, X2))plus(active(X1), X2)active(plus(X1, X2))plus(X1, active(X2))
active(s(X))s(active(X))active(x(X1, X2))x(active(X1), X2)
active(x(X1, X2))x(X1, active(X2))and(mark(X1), X2)mark(and(X1, X2))
plus(mark(X1), X2)mark(plus(X1, X2))plus(X1, mark(X2))mark(plus(X1, X2))
s(mark(X))mark(s(X))x(mark(X1), X2)mark(x(X1, X2))
x(X1, mark(X2))mark(x(X1, X2))proper(and(X1, X2))and(proper(X1), proper(X2))
proper(tt)ok(tt)proper(plus(X1, X2))plus(proper(X1), proper(X2))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(x(X1, X2))x(proper(X1), proper(X2))and(ok(X1), ok(X2))ok(and(X1, X2))
plus(ok(X1), ok(X2))ok(plus(X1, X2))s(ok(X))ok(s(X))
x(ok(X1), ok(X2))ok(x(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: plus, 0, s, tt, active, mark, ok, proper, and, x, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(and(X1, X2))proper#(X2)
proper#(plus(X1, X2))proper#(X1)proper#(x(X1, X2))proper#(X1)
proper#(plus(X1, X2))proper#(X2)proper#(and(X1, X2))proper#(X1)
proper#(x(X1, X2))proper#(X2)