TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60015 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (7375ms).
| Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (8ms), PolynomialLinearRange4iUR (3333ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (5019ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (15000ms), DependencyGraph (7ms), ReductionPairSAT (18294ms), DependencyGraph (5ms), ReductionPairSAT (timeout)].
| Problem 3 was processed with processor SubtermCriterion (5ms).
| Problem 4 was processed with processor SubtermCriterion (2ms).
| Problem 5 was processed with processor SubtermCriterion (1ms).
| | Problem 14 was processed with processor ReductionPairSAT (102ms).
| Problem 6 was processed with processor SubtermCriterion (2ms).
| Problem 7 was processed with processor SubtermCriterion (1ms).
| Problem 8 was processed with processor SubtermCriterion (3ms).
| Problem 9 was processed with processor SubtermCriterion (1ms).
| Problem 10 was processed with processor SubtermCriterion (1ms).
| Problem 11 was processed with processor SubtermCriterion (2ms).
| | Problem 15 was processed with processor PolynomialLinearRange4iUR (76ms).
| Problem 12 was processed with processor SubtermCriterion (3ms).
| Problem 13 was processed with processor SubtermCriterion (1ms).
The following open problems remain:
Open Dependency Pair Problem 2
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, top, x
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
active#(plus(N, s(M))) | → | and#(isNat(M), isNat(N)) | | top#(ok(X)) | → | top#(active(X)) |
U21#(ok(X1), ok(X2), ok(X3)) | → | U21#(X1, X2, X3) | | proper#(U11(X1, X2)) | → | proper#(X1) |
active#(isNat(x(V1, V2))) | → | isNat#(V1) | | U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) |
proper#(U11(X1, X2)) | → | U11#(proper(X1), proper(X2)) | | U11#(mark(X1), X2) | → | U11#(X1, X2) |
proper#(and(X1, X2)) | → | and#(proper(X1), proper(X2)) | | proper#(U41(X1, X2, X3)) | → | proper#(X2) |
active#(x(N, 0)) | → | U31#(isNat(N)) | | active#(U21(tt, M, N)) | → | s#(plus(N, M)) |
active#(isNat(x(V1, V2))) | → | and#(isNat(V1), isNat(V2)) | | proper#(U11(X1, X2)) | → | proper#(X2) |
active#(U31(X)) | → | U31#(active(X)) | | proper#(and(X1, X2)) | → | proper#(X2) |
plus#(X1, mark(X2)) | → | plus#(X1, X2) | | active#(U41(tt, M, N)) | → | x#(N, M) |
proper#(plus(X1, X2)) | → | proper#(X1) | | x#(ok(X1), ok(X2)) | → | x#(X1, X2) |
x#(X1, mark(X2)) | → | x#(X1, X2) | | active#(plus(N, 0)) | → | isNat#(N) |
active#(U11(X1, X2)) | → | active#(X1) | | top#(mark(X)) | → | proper#(X) |
proper#(U41(X1, X2, X3)) | → | U41#(proper(X1), proper(X2), proper(X3)) | | proper#(plus(X1, X2)) | → | plus#(proper(X1), proper(X2)) |
active#(isNat(plus(V1, V2))) | → | isNat#(V2) | | top#(mark(X)) | → | top#(proper(X)) |
active#(U31(X)) | → | active#(X) | | active#(isNat(plus(V1, V2))) | → | and#(isNat(V1), isNat(V2)) |
U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) | | isNat#(ok(X)) | → | isNat#(X) |
active#(U21(X1, X2, X3)) | → | U21#(active(X1), X2, X3) | | and#(mark(X1), X2) | → | and#(X1, X2) |
active#(x(X1, X2)) | → | x#(X1, active(X2)) | | active#(U21(X1, X2, X3)) | → | active#(X1) |
active#(U41(X1, X2, X3)) | → | active#(X1) | | proper#(s(X)) | → | proper#(X) |
active#(plus(X1, X2)) | → | active#(X1) | | active#(plus(X1, X2)) | → | active#(X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) | | U31#(mark(X)) | → | U31#(X) |
active#(x(N, s(M))) | → | and#(isNat(M), isNat(N)) | | active#(plus(N, s(M))) | → | isNat#(N) |
active#(x(N, 0)) | → | isNat#(N) | | proper#(U41(X1, X2, X3)) | → | proper#(X3) |
proper#(U31(X)) | → | U31#(proper(X)) | | proper#(U21(X1, X2, X3)) | → | proper#(X3) |
active#(U41(X1, X2, X3)) | → | U41#(active(X1), X2, X3) | | active#(x(N, s(M))) | → | U41#(and(isNat(M), isNat(N)), M, N) |
proper#(x(X1, X2)) | → | proper#(X1) | | and#(ok(X1), ok(X2)) | → | and#(X1, X2) |
active#(x(X1, X2)) | → | x#(active(X1), X2) | | active#(isNat(plus(V1, V2))) | → | isNat#(V1) |
proper#(and(X1, X2)) | → | proper#(X1) | | top#(ok(X)) | → | active#(X) |
active#(and(X1, X2)) | → | and#(active(X1), X2) | | active#(isNat(x(V1, V2))) | → | isNat#(V2) |
x#(mark(X1), X2) | → | x#(X1, X2) | | proper#(U21(X1, X2, X3)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X1) | | U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) |
active#(U41(tt, M, N)) | → | plus#(x(N, M), N) | | proper#(isNat(X)) | → | isNat#(proper(X)) |
proper#(plus(X1, X2)) | → | proper#(X2) | | proper#(x(X1, X2)) | → | x#(proper(X1), proper(X2)) |
active#(isNat(s(V1))) | → | isNat#(V1) | | U41#(ok(X1), ok(X2), ok(X3)) | → | U41#(X1, X2, X3) |
active#(plus(N, s(M))) | → | U21#(and(isNat(M), isNat(N)), M, N) | | plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) |
proper#(isNat(X)) | → | proper#(X) | | active#(x(X1, X2)) | → | active#(X1) |
active#(U11(X1, X2)) | → | U11#(active(X1), X2) | | active#(s(X)) | → | s#(active(X)) |
proper#(U21(X1, X2, X3)) | → | U21#(proper(X1), proper(X2), proper(X3)) | | U31#(ok(X)) | → | U31#(X) |
proper#(x(X1, X2)) | → | proper#(X2) | | s#(ok(X)) | → | s#(X) |
s#(mark(X)) | → | s#(X) | | active#(plus(X1, X2)) | → | plus#(X1, active(X2)) |
active#(U21(tt, M, N)) | → | plus#(N, M) | | active#(x(N, s(M))) | → | isNat#(M) |
active#(plus(X1, X2)) | → | plus#(active(X1), X2) | | active#(s(X)) | → | active#(X) |
active#(plus(N, s(M))) | → | isNat#(M) | | active#(x(N, s(M))) | → | isNat#(N) |
proper#(s(X)) | → | s#(proper(X)) | | active#(x(X1, X2)) | → | active#(X2) |
proper#(U21(X1, X2, X3)) | → | proper#(X2) | | active#(and(X1, X2)) | → | active#(X1) |
active#(plus(N, 0)) | → | U11#(isNat(N), N) | | proper#(U31(X)) | → | proper#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
The following SCCs where found
plus#(ok(X1), ok(X2)) → plus#(X1, X2) | plus#(X1, mark(X2)) → plus#(X1, X2) |
plus#(mark(X1), X2) → plus#(X1, X2) |
active#(plus(X1, X2)) → active#(X1) | active#(U31(X)) → active#(X) |
active#(s(X)) → active#(X) | active#(x(X1, X2)) → active#(X1) |
active#(x(X1, X2)) → active#(X2) | active#(plus(X1, X2)) → active#(X2) |
active#(and(X1, X2)) → active#(X1) | active#(U11(X1, X2)) → active#(X1) |
active#(U41(X1, X2, X3)) → active#(X1) | active#(U21(X1, X2, X3)) → active#(X1) |
U21#(ok(X1), ok(X2), ok(X3)) → U21#(X1, X2, X3) | U21#(mark(X1), X2, X3) → U21#(X1, X2, X3) |
x#(mark(X1), X2) → x#(X1, X2) | x#(ok(X1), ok(X2)) → x#(X1, X2) |
x#(X1, mark(X2)) → x#(X1, X2) |
proper#(isNat(X)) → proper#(X) | proper#(U11(X1, X2)) → proper#(X1) |
proper#(U41(X1, X2, X3)) → proper#(X3) | proper#(U21(X1, X2, X3)) → proper#(X3) |
proper#(x(X1, X2)) → proper#(X1) | proper#(and(X1, X2)) → proper#(X1) |
proper#(x(X1, X2)) → proper#(X2) | proper#(U41(X1, X2, X3)) → proper#(X2) |
proper#(s(X)) → proper#(X) | proper#(U11(X1, X2)) → proper#(X2) |
proper#(and(X1, X2)) → proper#(X2) | proper#(U21(X1, X2, X3)) → proper#(X1) |
proper#(U41(X1, X2, X3)) → proper#(X1) | proper#(plus(X1, X2)) → proper#(X1) |
proper#(U21(X1, X2, X3)) → proper#(X2) | proper#(plus(X1, X2)) → proper#(X2) |
proper#(U31(X)) → proper#(X) |
U31#(ok(X)) → U31#(X) | U31#(mark(X)) → U31#(X) |
U11#(ok(X1), ok(X2)) → U11#(X1, X2) | U11#(mark(X1), X2) → U11#(X1, X2) |
isNat#(ok(X)) → isNat#(X) |
and#(ok(X1), ok(X2)) → and#(X1, X2) | and#(mark(X1), X2) → and#(X1, X2) |
s#(mark(X)) → s#(X) | s#(ok(X)) → s#(X) |
U41#(mark(X1), X2, X3) → U41#(X1, X2, X3) | U41#(ok(X1), ok(X2), ok(X3)) → U41#(X1, X2, X3) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(isNat(X)) | → | proper#(X) | | proper#(U11(X1, X2)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X3) | | proper#(U21(X1, X2, X3)) | → | proper#(X3) |
proper#(x(X1, X2)) | → | proper#(X1) | | proper#(and(X1, X2)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X2) | | proper#(x(X1, X2)) | → | proper#(X2) |
proper#(s(X)) | → | proper#(X) | | proper#(U11(X1, X2)) | → | proper#(X2) |
proper#(and(X1, X2)) | → | proper#(X2) | | proper#(U21(X1, X2, X3)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X1) | | proper#(plus(X1, X2)) | → | proper#(X1) |
proper#(U21(X1, X2, X3)) | → | proper#(X2) | | proper#(plus(X1, X2)) | → | proper#(X2) |
proper#(U31(X)) | → | proper#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(isNat(X)) | → | proper#(X) | | proper#(U11(X1, X2)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X3) | | proper#(U21(X1, X2, X3)) | → | proper#(X3) |
proper#(x(X1, X2)) | → | proper#(X1) | | proper#(and(X1, X2)) | → | proper#(X1) |
proper#(x(X1, X2)) | → | proper#(X2) | | proper#(U41(X1, X2, X3)) | → | proper#(X2) |
proper#(s(X)) | → | proper#(X) | | proper#(U11(X1, X2)) | → | proper#(X2) |
proper#(and(X1, X2)) | → | proper#(X2) | | proper#(U21(X1, X2, X3)) | → | proper#(X1) |
proper#(U41(X1, X2, X3)) | → | proper#(X1) | | proper#(plus(X1, X2)) | → | proper#(X1) |
proper#(U21(X1, X2, X3)) | → | proper#(X2) | | proper#(plus(X1, X2)) | → | proper#(X2) |
proper#(U31(X)) | → | proper#(X) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(plus(X1, X2)) | → | active#(X1) | | active#(U31(X)) | → | active#(X) |
active#(s(X)) | → | active#(X) | | active#(x(X1, X2)) | → | active#(X1) |
active#(x(X1, X2)) | → | active#(X2) | | active#(plus(X1, X2)) | → | active#(X2) |
active#(and(X1, X2)) | → | active#(X1) | | active#(U11(X1, X2)) | → | active#(X1) |
active#(U41(X1, X2, X3)) | → | active#(X1) | | active#(U21(X1, X2, X3)) | → | active#(X1) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(U31(X)) | → | active#(X) | | active#(plus(X1, X2)) | → | active#(X1) |
active#(s(X)) | → | active#(X) | | active#(x(X1, X2)) | → | active#(X1) |
active#(x(X1, X2)) | → | active#(X2) | | active#(plus(X1, X2)) | → | active#(X2) |
active#(and(X1, X2)) | → | active#(X1) | | active#(U11(X1, X2)) | → | active#(X1) |
active#(U21(X1, X2, X3)) | → | active#(X1) | | active#(U41(X1, X2, X3)) | → | active#(X1) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(X1, mark(X2)) | → | plus#(X1, X2) |
plus#(mark(X1), X2) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
plus#(ok(X1), ok(X2)) | → | plus#(X1, X2) | | plus#(mark(X1), X2) | → | plus#(X1, X2) |
Problem 14: ReductionPairSAT
Dependency Pair Problem
Dependency Pairs
plus#(X1, mark(X2)) | → | plus#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, top, x
Strategy
Function Precedence
plus# < mark < plus = and = isNat = 0 = s = tt = U41 = U11 = active = ok = U31 = proper = U21 = top = x
Argument Filtering
plus: all arguments are removed from plus
mark: 1
and: all arguments are removed from and
isNat: all arguments are removed from isNat
0: all arguments are removed from 0
s: all arguments are removed from s
tt: all arguments are removed from tt
U41: all arguments are removed from U41
U11: 1 2
plus#: 2
active: all arguments are removed from active
ok: all arguments are removed from ok
U31: all arguments are removed from U31
proper: all arguments are removed from proper
U21: collapses to 2
top: all arguments are removed from top
x: 1 2
Status
plus: multiset
mark: multiset
and: multiset
isNat: multiset
0: multiset
s: multiset
tt: multiset
U41: multiset
U11: lexicographic with permutation 1 → 2 2 → 1
plus#: lexicographic with permutation 2 → 1
active: multiset
ok: multiset
U31: multiset
proper: multiset
top: multiset
x: lexicographic with permutation 1 → 2 2 → 1
Usable Rules
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
Eliminated dependency pairs
The following dependency pairs (at least) can be eliminated according to the given precedence.
plus#(X1, mark(X2)) → plus#(X1, X2) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNat#(ok(X)) | → | isNat#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNat#(ok(X)) | → | isNat#(X) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U31#(ok(X)) | → | U31#(X) | | U31#(mark(X)) | → | U31#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U31#(ok(X)) | → | U31#(X) | | U31#(mark(X)) | → | U31#(X) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(ok(X)) | → | s#(X) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) | | U41#(ok(X1), ok(X2), ok(X3)) | → | U41#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U41#(mark(X1), X2, X3) | → | U41#(X1, X2, X3) | | U41#(ok(X1), ok(X2), ok(X3)) | → | U41#(X1, X2, X3) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) | | U11#(mark(X1), X2) | → | U11#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) | | U11#(mark(X1), X2) | → | U11#(X1, X2) |
Problem 11: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
x#(mark(X1), X2) | → | x#(X1, X2) | | x#(ok(X1), ok(X2)) | → | x#(X1, X2) |
x#(X1, mark(X2)) | → | x#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
x#(mark(X1), X2) | → | x#(X1, X2) | | x#(ok(X1), ok(X2)) | → | x#(X1, X2) |
Problem 15: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
x#(X1, mark(X2)) | → | x#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, top, x
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 0
- U21(x,y,z): 0
- U31(x): 0
- U41(x,y,z): 0
- active(x): 0
- and(x,y): 0
- isNat(x): 0
- mark(x): x + 2
- ok(x): 0
- plus(x,y): 0
- proper(x): 0
- s(x): 0
- top(x): 0
- tt: 0
- x(x,y): 0
- x#(x,y): y + x + 1
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
x#(X1, mark(X2)) | → | x#(X1, X2) |
Problem 12: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
U21#(ok(X1), ok(X2), ok(X3)) | → | U21#(X1, X2, X3) | | U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
U21#(ok(X1), ok(X2), ok(X3)) | → | U21#(X1, X2, X3) | | U21#(mark(X1), X2, X3) | → | U21#(X1, X2, X3) |
Problem 13: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(ok(X1), ok(X2)) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |
Rewrite Rules
active(U11(tt, N)) | → | mark(N) | | active(U21(tt, M, N)) | → | mark(s(plus(N, M))) |
active(U31(tt)) | → | mark(0) | | active(U41(tt, M, N)) | → | mark(plus(x(N, M), N)) |
active(and(tt, X)) | → | mark(X) | | active(isNat(0)) | → | mark(tt) |
active(isNat(plus(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(isNat(s(V1))) | → | mark(isNat(V1)) |
active(isNat(x(V1, V2))) | → | mark(and(isNat(V1), isNat(V2))) | | active(plus(N, 0)) | → | mark(U11(isNat(N), N)) |
active(plus(N, s(M))) | → | mark(U21(and(isNat(M), isNat(N)), M, N)) | | active(x(N, 0)) | → | mark(U31(isNat(N))) |
active(x(N, s(M))) | → | mark(U41(and(isNat(M), isNat(N)), M, N)) | | active(U11(X1, X2)) | → | U11(active(X1), X2) |
active(U21(X1, X2, X3)) | → | U21(active(X1), X2, X3) | | active(s(X)) | → | s(active(X)) |
active(plus(X1, X2)) | → | plus(active(X1), X2) | | active(plus(X1, X2)) | → | plus(X1, active(X2)) |
active(U31(X)) | → | U31(active(X)) | | active(U41(X1, X2, X3)) | → | U41(active(X1), X2, X3) |
active(x(X1, X2)) | → | x(active(X1), X2) | | active(x(X1, X2)) | → | x(X1, active(X2)) |
active(and(X1, X2)) | → | and(active(X1), X2) | | U11(mark(X1), X2) | → | mark(U11(X1, X2)) |
U21(mark(X1), X2, X3) | → | mark(U21(X1, X2, X3)) | | s(mark(X)) | → | mark(s(X)) |
plus(mark(X1), X2) | → | mark(plus(X1, X2)) | | plus(X1, mark(X2)) | → | mark(plus(X1, X2)) |
U31(mark(X)) | → | mark(U31(X)) | | U41(mark(X1), X2, X3) | → | mark(U41(X1, X2, X3)) |
x(mark(X1), X2) | → | mark(x(X1, X2)) | | x(X1, mark(X2)) | → | mark(x(X1, X2)) |
and(mark(X1), X2) | → | mark(and(X1, X2)) | | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) |
proper(tt) | → | ok(tt) | | proper(U21(X1, X2, X3)) | → | U21(proper(X1), proper(X2), proper(X3)) |
proper(s(X)) | → | s(proper(X)) | | proper(plus(X1, X2)) | → | plus(proper(X1), proper(X2)) |
proper(U31(X)) | → | U31(proper(X)) | | proper(0) | → | ok(0) |
proper(U41(X1, X2, X3)) | → | U41(proper(X1), proper(X2), proper(X3)) | | proper(x(X1, X2)) | → | x(proper(X1), proper(X2)) |
proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | | proper(isNat(X)) | → | isNat(proper(X)) |
U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) | | U21(ok(X1), ok(X2), ok(X3)) | → | ok(U21(X1, X2, X3)) |
s(ok(X)) | → | ok(s(X)) | | plus(ok(X1), ok(X2)) | → | ok(plus(X1, X2)) |
U31(ok(X)) | → | ok(U31(X)) | | U41(ok(X1), ok(X2), ok(X3)) | → | ok(U41(X1, X2, X3)) |
x(ok(X1), ok(X2)) | → | ok(x(X1, X2)) | | and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |
isNat(ok(X)) | → | ok(isNat(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: plus, mark, and, isNat, 0, s, tt, U41, active, U11, ok, proper, U31, U21, x, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(ok(X1), ok(X2)) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |