YES

The TRS could be proven terminating. The proof took 60003 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (669ms).
 | – Problem 2 was processed with processor SubtermCriterion (34ms).
 |    | – Problem 5 was processed with processor DependencyGraph (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (216ms).
 |    | – Problem 7 was processed with processor DependencyGraph (55ms).
 |    |    | – Problem 8 was processed with processor PolynomialLinearRange4 (165ms).
 |    |    |    | – Problem 9 was processed with processor PolynomialLinearRange4 (260ms).
 |    |    |    |    | – Problem 10 was processed with processor PolynomialLinearRange4 (135ms).
 |    |    |    |    |    | – Problem 11 was processed with processor DependencyGraph (13ms).
 |    |    |    |    |    |    | – Problem 12 was processed with processor PolynomialLinearRange4 (37ms).
 |    |    |    |    |    |    |    | – Problem 13 was processed with processor PolynomialLinearRange4 (17ms).
 |    |    |    |    |    |    |    |    | – Problem 14 was processed with processor PolynomialLinearRange4 (15ms).
 |    |    |    |    |    |    |    |    |    | – Problem 15 was processed with processor PolynomialLinearRange4 (7ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 6 was processed with processor DependencyGraph (33ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(isNat(X))a__isNat#(X)
mark#(isNatIList(X))a__isNatIList#(X)mark#(U31(X))a__U31#(mark(X))
mark#(zeros)a__zeros#a__U41#(tt, V2)a__U42#(a__isNatIList(V2))
mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)
mark#(U42(X))mark#(X)mark#(U62(X1, X2))a__U62#(mark(X1), X2)
mark#(U62(X1, X2))mark#(X1)a__isNat#(s(V1))a__isNat#(V1)
mark#(U51(X1, X2))mark#(X1)a__U51#(tt, V2)a__isNatList#(V2)
a__isNatList#(cons(V1, V2))a__U51#(a__isNat(V1), V2)mark#(U21(X))mark#(X)
mark#(length(X))a__length#(mark(X))a__isNatIList#(cons(V1, V2))a__U41#(a__isNat(V1), V2)
a__isNatIList#(V)a__isNatList#(V)a__isNat#(s(V1))a__U21#(a__isNat(V1))
mark#(U41(X1, X2))a__U41#(mark(X1), X2)mark#(U21(X))a__U21#(mark(X))
mark#(length(X))mark#(X)mark#(U41(X1, X2))mark#(X1)
mark#(s(X))mark#(X)mark#(U61(X1, X2, X3))a__U61#(mark(X1), X2, X3)
a__length#(cons(N, L))a__isNatList#(L)a__isNatList#(cons(V1, V2))a__isNat#(V1)
mark#(U51(X1, X2))a__U51#(mark(X1), X2)a__U41#(tt, V2)a__isNatIList#(V2)
a__U61#(tt, L, N)a__U62#(a__isNat(N), L)mark#(cons(X1, X2))mark#(X1)
mark#(U52(X))mark#(X)a__U62#(tt, L)a__length#(mark(L))
a__U61#(tt, L, N)a__isNat#(N)a__isNat#(length(V1))a__isNatList#(V1)
mark#(isNatList(X))a__isNatList#(X)a__length#(cons(N, L))a__U61#(a__isNatList(L), L, N)
a__isNatIList#(cons(V1, V2))a__isNat#(V1)mark#(U11(X))a__U11#(mark(X))
a__U51#(tt, V2)a__U52#(a__isNatList(V2))mark#(U42(X))a__U42#(mark(X))
mark#(U31(X))mark#(X)mark#(U52(X))a__U52#(mark(X))
a__isNatIList#(V)a__U31#(a__isNatList(V))a__isNat#(length(V1))a__U11#(a__isNatList(V1))

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


The following SCCs where found

a__isNatIList#(cons(V1, V2)) → a__U41#(a__isNat(V1), V2)a__U41#(tt, V2) → a__isNatIList#(V2)

a__isNatList#(cons(V1, V2)) → a__isNat#(V1)a__isNat#(s(V1)) → a__isNat#(V1)
a__isNatList#(cons(V1, V2)) → a__U51#(a__isNat(V1), V2)a__U51#(tt, V2) → a__isNatList#(V2)
a__isNat#(length(V1)) → a__isNatList#(V1)

a__U62#(tt, L) → mark#(L)a__U61#(tt, L, N) → a__U62#(a__isNat(N), L)
mark#(U61(X1, X2, X3)) → mark#(X1)mark#(cons(X1, X2)) → mark#(X1)
mark#(U11(X)) → mark#(X)mark#(U62(X1, X2)) → a__U62#(mark(X1), X2)
mark#(U42(X)) → mark#(X)mark#(U62(X1, X2)) → mark#(X1)
mark#(U52(X)) → mark#(X)a__U62#(tt, L) → a__length#(mark(L))
mark#(U51(X1, X2)) → mark#(X1)mark#(U21(X)) → mark#(X)
mark#(length(X)) → a__length#(mark(X))a__length#(cons(N, L)) → a__U61#(a__isNatList(L), L, N)
mark#(U31(X)) → mark#(X)mark#(length(X)) → mark#(X)
mark#(s(X)) → mark#(X)mark#(U41(X1, X2)) → mark#(X1)
mark#(U61(X1, X2, X3)) → a__U61#(mark(X1), X2, X3)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

a__isNatIList#(cons(V1, V2))a__U41#(a__isNat(V1), V2)a__U41#(tt, V2)a__isNatIList#(V2)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

a__isNatIList#(cons(V1, V2))a__U41#(a__isNat(V1), V2)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U41#(tt, V2)a__isNatIList#(V2)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


There are no SCCs!

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)a__U61#(tt, L, N)a__U62#(a__isNat(N), L)
mark#(cons(X1, X2))mark#(X1)mark#(U61(X1, X2, X3))mark#(X1)
mark#(U11(X))mark#(X)mark#(U62(X1, X2))mark#(X1)
mark#(U42(X))mark#(X)mark#(U62(X1, X2))a__U62#(mark(X1), X2)
mark#(U52(X))mark#(X)mark#(U51(X1, X2))mark#(X1)
a__U62#(tt, L)a__length#(mark(L))mark#(U21(X))mark#(X)
mark#(length(X))a__length#(mark(X))a__length#(cons(N, L))a__U61#(a__isNatList(L), L, N)
mark#(U31(X))mark#(X)mark#(length(X))mark#(X)
mark#(s(X))mark#(X)mark#(U41(X1, X2))mark#(X1)
mark#(U61(X1, X2, X3))a__U61#(mark(X1), X2, X3)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Polynomial Interpretation

Standard Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
a__length(X)length(X)a__isNat(0)tt
a__isNat(X)isNat(X)a__U62(X1, X2)U62(X1, X2)
a__U61(X1, X2, X3)U61(X1, X2, X3)a__U41(tt, V2)a__U42(a__isNatIList(V2))
a__U41(X1, X2)U41(X1, X2)mark(tt)tt
mark(U42(X))a__U42(mark(X))a__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__U21(X)U21(X)mark(length(X))a__length(mark(X))
mark(U52(X))a__U52(mark(X))a__zeroszeros
mark(zeros)a__zerosmark(U41(X1, X2))a__U41(mark(X1), X2)
a__U31(X)U31(X)mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__U11(tt)tt
a__isNatIList(zeros)tta__length(nil)0
mark(U31(X))a__U31(mark(X))a__U11(X)U11(X)
a__length(cons(N, L))a__U61(a__isNatList(L), L, N)a__U61(tt, L, N)a__U62(a__isNat(N), L)
a__U31(tt)ttmark(U11(X))a__U11(mark(X))
a__isNatList(nil)ttmark(nil)nil
a__U51(X1, X2)U51(X1, X2)mark(U62(X1, X2))a__U62(mark(X1), X2)
a__U21(tt)tta__isNat(length(V1))a__U11(a__isNatList(V1))
mark(0)0a__U62(tt, L)s(a__length(mark(L)))
mark(U21(X))a__U21(mark(X))mark(isNat(X))a__isNat(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)a__U42(X)U42(X)
a__isNatIList(X)isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__zeroscons(0, zeros)
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(X)U52(X)
a__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)a__U52(tt)tt
a__U42(tt)tta__isNatIList(V)a__U31(a__isNatList(V))
a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__U61#(tt, L, N)a__U62#(a__isNat(N), L)

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(cons(X1, X2))mark#(X1)
mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)
mark#(U62(X1, X2))mark#(X1)mark#(U42(X))mark#(X)
mark#(U62(X1, X2))a__U62#(mark(X1), X2)mark#(U52(X))mark#(X)
mark#(U51(X1, X2))mark#(X1)a__U62#(tt, L)a__length#(mark(L))
mark#(U21(X))mark#(X)mark#(length(X))a__length#(mark(X))
a__length#(cons(N, L))a__U61#(a__isNatList(L), L, N)mark#(length(X))mark#(X)
mark#(U31(X))mark#(X)mark#(U61(X1, X2, X3))a__U61#(mark(X1), X2, X3)
mark#(U41(X1, X2))mark#(X1)mark#(s(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


The following SCCs where found

a__U62#(tt, L) → mark#(L)mark#(U61(X1, X2, X3)) → mark#(X1)
mark#(cons(X1, X2)) → mark#(X1)mark#(U11(X)) → mark#(X)
mark#(U62(X1, X2)) → a__U62#(mark(X1), X2)mark#(U62(X1, X2)) → mark#(X1)
mark#(U42(X)) → mark#(X)mark#(U52(X)) → mark#(X)
mark#(U51(X1, X2)) → mark#(X1)mark#(U21(X)) → mark#(X)
mark#(length(X)) → mark#(X)mark#(U31(X)) → mark#(X)
mark#(U41(X1, X2)) → mark#(X1)mark#(s(X)) → mark#(X)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(cons(X1, X2))mark#(X1)
mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)
mark#(U42(X))mark#(X)mark#(U62(X1, X2))mark#(X1)
mark#(U62(X1, X2))a__U62#(mark(X1), X2)mark#(U52(X))mark#(X)
mark#(U51(X1, X2))mark#(X1)mark#(U21(X))mark#(X)
mark#(U31(X))mark#(X)mark#(length(X))mark#(X)
mark#(U41(X1, X2))mark#(X1)mark#(s(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


Polynomial Interpretation

Standard Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
a__length(X)length(X)a__isNat(0)tt
a__isNat(X)isNat(X)a__U62(X1, X2)U62(X1, X2)
a__U61(X1, X2, X3)U61(X1, X2, X3)a__U41(tt, V2)a__U42(a__isNatIList(V2))
a__U41(X1, X2)U41(X1, X2)mark(tt)tt
mark(U42(X))a__U42(mark(X))a__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__U21(X)U21(X)mark(length(X))a__length(mark(X))
mark(U52(X))a__U52(mark(X))a__zeroszeros
mark(zeros)a__zerosmark(U41(X1, X2))a__U41(mark(X1), X2)
a__U31(X)U31(X)mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__U11(tt)tt
a__isNatIList(zeros)tta__length(nil)0
mark(U31(X))a__U31(mark(X))a__U11(X)U11(X)
a__length(cons(N, L))a__U61(a__isNatList(L), L, N)a__U61(tt, L, N)a__U62(a__isNat(N), L)
a__U31(tt)ttmark(U11(X))a__U11(mark(X))
a__isNatList(nil)ttmark(nil)nil
a__U51(X1, X2)U51(X1, X2)mark(U62(X1, X2))a__U62(mark(X1), X2)
a__U21(tt)tta__isNat(length(V1))a__U11(a__isNatList(V1))
mark(0)0a__U62(tt, L)s(a__length(mark(L)))
mark(U21(X))a__U21(mark(X))mark(isNat(X))a__isNat(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)a__U42(X)U42(X)
a__isNatIList(X)isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__zeroscons(0, zeros)
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(X)U52(X)
a__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)a__U52(tt)tt
a__isNatIList(V)a__U31(a__isNatList(V))a__U42(tt)tt
a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(cons(X1, X2))mark#(X1)mark#(U31(X))mark#(X)
mark#(U41(X1, X2))mark#(X1)

Problem 9: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(U61(X1, X2, X3))mark#(X1)
mark#(length(X))mark#(X)mark#(U11(X))mark#(X)
mark#(U62(X1, X2))a__U62#(mark(X1), X2)mark#(U62(X1, X2))mark#(X1)
mark#(U42(X))mark#(X)mark#(s(X))mark#(X)
mark#(U52(X))mark#(X)mark#(U51(X1, X2))mark#(X1)
mark#(U21(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Polynomial Interpretation

Standard Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
a__length(X)length(X)a__isNat(0)tt
a__isNat(X)isNat(X)a__U62(X1, X2)U62(X1, X2)
a__U61(X1, X2, X3)U61(X1, X2, X3)a__U41(tt, V2)a__U42(a__isNatIList(V2))
a__U41(X1, X2)U41(X1, X2)mark(tt)tt
mark(U42(X))a__U42(mark(X))a__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__U21(X)U21(X)mark(length(X))a__length(mark(X))
mark(U52(X))a__U52(mark(X))a__zeroszeros
mark(zeros)a__zerosmark(U41(X1, X2))a__U41(mark(X1), X2)
a__U31(X)U31(X)mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__U11(tt)tt
a__isNatIList(zeros)tta__length(nil)0
mark(U31(X))a__U31(mark(X))a__U11(X)U11(X)
a__length(cons(N, L))a__U61(a__isNatList(L), L, N)a__U61(tt, L, N)a__U62(a__isNat(N), L)
a__U31(tt)ttmark(U11(X))a__U11(mark(X))
a__isNatList(nil)ttmark(nil)nil
a__U51(X1, X2)U51(X1, X2)mark(U62(X1, X2))a__U62(mark(X1), X2)
a__U21(tt)tta__isNat(length(V1))a__U11(a__isNatList(V1))
mark(0)0a__U62(tt, L)s(a__length(mark(L)))
mark(U21(X))a__U21(mark(X))mark(isNat(X))a__isNat(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)a__U42(X)U42(X)
a__isNatIList(X)isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__zeroscons(0, zeros)
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(X)U52(X)
a__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)a__U52(tt)tt
a__isNatIList(V)a__U31(a__isNatList(V))a__U42(tt)tt
a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(length(X))mark#(X)

Problem 10: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(U61(X1, X2, X3))mark#(X1)
mark#(U11(X))mark#(X)mark#(U42(X))mark#(X)
mark#(U62(X1, X2))mark#(X1)mark#(U62(X1, X2))a__U62#(mark(X1), X2)
mark#(U52(X))mark#(X)mark#(s(X))mark#(X)
mark#(U51(X1, X2))mark#(X1)mark#(U21(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


Polynomial Interpretation

Standard Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
a__length(X)length(X)a__isNat(0)tt
a__isNat(X)isNat(X)a__U62(X1, X2)U62(X1, X2)
a__U61(X1, X2, X3)U61(X1, X2, X3)a__U41(tt, V2)a__U42(a__isNatIList(V2))
a__U41(X1, X2)U41(X1, X2)mark(tt)tt
mark(U42(X))a__U42(mark(X))a__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__U21(X)U21(X)mark(length(X))a__length(mark(X))
mark(U52(X))a__U52(mark(X))a__zeroszeros
mark(zeros)a__zerosmark(U41(X1, X2))a__U41(mark(X1), X2)
a__U31(X)U31(X)mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__U11(tt)tt
a__isNatIList(zeros)tta__length(nil)0
mark(U31(X))a__U31(mark(X))a__U11(X)U11(X)
a__length(cons(N, L))a__U61(a__isNatList(L), L, N)a__U61(tt, L, N)a__U62(a__isNat(N), L)
a__U31(tt)ttmark(U11(X))a__U11(mark(X))
a__isNatList(nil)ttmark(nil)nil
a__U51(X1, X2)U51(X1, X2)mark(U62(X1, X2))a__U62(mark(X1), X2)
a__U21(tt)tta__isNat(length(V1))a__U11(a__isNatList(V1))
mark(0)0a__U62(tt, L)s(a__length(mark(L)))
mark(U21(X))a__U21(mark(X))mark(isNat(X))a__isNat(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)a__U42(X)U42(X)
a__isNatIList(X)isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
a__isNat(s(V1))a__U21(a__isNat(V1))a__zeroscons(0, zeros)
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(X)U52(X)
a__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)a__U52(tt)tt
a__isNatIList(V)a__U31(a__isNatList(V))a__U42(tt)tt
a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U62(X1, X2))a__U62#(mark(X1), X2)

Problem 11: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U62#(tt, L)mark#(L)mark#(U61(X1, X2, X3))mark#(X1)
mark#(U11(X))mark#(X)mark#(U62(X1, X2))mark#(X1)
mark#(U42(X))mark#(X)mark#(s(X))mark#(X)
mark#(U52(X))mark#(X)mark#(U51(X1, X2))mark#(X1)
mark#(U21(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


The following SCCs where found

mark#(U61(X1, X2, X3)) → mark#(X1)mark#(U11(X)) → mark#(X)
mark#(U62(X1, X2)) → mark#(X1)mark#(U42(X)) → mark#(X)
mark#(s(X)) → mark#(X)mark#(U52(X)) → mark#(X)
mark#(U51(X1, X2)) → mark#(X1)mark#(U21(X)) → mark#(X)

Problem 12: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)
mark#(U62(X1, X2))mark#(X1)mark#(U42(X))mark#(X)
mark#(s(X))mark#(X)mark#(U52(X))mark#(X)
mark#(U51(X1, X2))mark#(X1)mark#(U21(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U62(X1, X2))mark#(X1)mark#(U52(X))mark#(X)
mark#(s(X))mark#(X)mark#(U51(X1, X2))mark#(X1)
mark#(U21(X))mark#(X)

Problem 13: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)
mark#(U42(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U42(X))mark#(X)

Problem 14: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U61(X1, X2, X3))mark#(X1)mark#(U11(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U61(X1, X2, X3))mark#(X1)

Problem 15: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

mark#(U11(X))mark#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U11(X))mark#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

a__isNatList#(cons(V1, V2))a__isNat#(V1)a__isNat#(s(V1))a__isNat#(V1)
a__isNatList#(cons(V1, V2))a__U51#(a__isNat(V1), V2)a__U51#(tt, V2)a__isNatList#(V2)
a__isNat#(length(V1))a__isNatList#(V1)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, length, a__U41, a__U42, U21, a__U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, zeros, tt, a__isNat, U52, U11, a__U31, U31, a__U11, a__U61, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

a__isNatList#(cons(V1, V2))a__isNat#(V1)a__isNat#(s(V1))a__isNat#(V1)
a__isNatList#(cons(V1, V2))a__U51#(a__isNat(V1), V2)a__isNat#(length(V1))a__isNatList#(V1)

Problem 6: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U51#(tt, V2)a__isNatList#(V2)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt)tt
a__U21(tt)tta__U31(tt)tt
a__U41(tt, V2)a__U42(a__isNatIList(V2))a__U42(tt)tt
a__U51(tt, V2)a__U52(a__isNatList(V2))a__U52(tt)tt
a__U61(tt, L, N)a__U62(a__isNat(N), L)a__U62(tt, L)s(a__length(mark(L)))
a__isNat(0)tta__isNat(length(V1))a__U11(a__isNatList(V1))
a__isNat(s(V1))a__U21(a__isNat(V1))a__isNatIList(V)a__U31(a__isNatList(V))
a__isNatIList(zeros)tta__isNatIList(cons(V1, V2))a__U41(a__isNat(V1), V2)
a__isNatList(nil)tta__isNatList(cons(V1, V2))a__U51(a__isNat(V1), V2)
a__length(nil)0a__length(cons(N, L))a__U61(a__isNatList(L), L, N)
mark(zeros)a__zerosmark(U11(X))a__U11(mark(X))
mark(U21(X))a__U21(mark(X))mark(U31(X))a__U31(mark(X))
mark(U41(X1, X2))a__U41(mark(X1), X2)mark(U42(X))a__U42(mark(X))
mark(isNatIList(X))a__isNatIList(X)mark(U51(X1, X2))a__U51(mark(X1), X2)
mark(U52(X))a__U52(mark(X))mark(isNatList(X))a__isNatList(X)
mark(U61(X1, X2, X3))a__U61(mark(X1), X2, X3)mark(U62(X1, X2))a__U62(mark(X1), X2)
mark(isNat(X))a__isNat(X)mark(length(X))a__length(mark(X))
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X)U11(X)a__U21(X)U21(X)
a__U31(X)U31(X)a__U41(X1, X2)U41(X1, X2)
a__U42(X)U42(X)a__isNatIList(X)isNatIList(X)
a__U51(X1, X2)U51(X1, X2)a__U52(X)U52(X)
a__isNatList(X)isNatList(X)a__U61(X1, X2, X3)U61(X1, X2, X3)
a__U62(X1, X2)U62(X1, X2)a__isNat(X)isNat(X)
a__length(X)length(X)

Original Signature

Termination of terms over the following signature is verified: a__U51, a__U52, isNat, a__isNatList, U62, U61, U42, U41, a__U41, length, a__U42, a__U21, U21, cons, a__zeros, a__U62, isNatIList, a__length, mark, 0, isNatList, U51, a__isNatIList, s, tt, zeros, a__isNat, U52, a__U31, U11, a__U11, U31, a__U61, nil

Strategy


There are no SCCs!