YES

The TRS could be proven terminating. The proof took 21104 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (253ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (8781ms).
 |    | – Problem 3 was processed with processor PolynomialLinearRange4iUR (7078ms).
 |    |    | – Problem 4 was processed with processor DependencyGraph (31ms).
 |    |    |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (2617ms).
 |    |    |    |    | – Problem 8 was processed with processor DependencyGraph (0ms).
 |    |    |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (948ms).
 |    |    |    |    | – Problem 9 was processed with processor PolynomialLinearRange4iUR (917ms).
 |    |    |    |    |    | – Problem 10 was processed with processor DependencyGraph (1ms).
 |    |    |    | – Problem 7 was processed with processor PolynomialLinearRange4iUR (10ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(U11(X1, X2))mark#(X1)mark#(isNat(X))a__isNat#(X)
mark#(isNatIList(X))a__isNatIList#(X)mark#(zeros)a__zeros#
a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__isNat#(s(V1))a__isNat#(V1)mark#(length(X))a__length#(mark(X))
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))a__isNatIList#(V)a__isNatList#(V)
a__U11#(tt, L)mark#(L)a__and#(tt, X)mark#(X)
mark#(length(X))mark#(X)mark#(s(X))mark#(X)
a__length#(cons(N, L))a__isNatList#(L)a__isNatList#(cons(V1, V2))a__isNat#(V1)
a__U11#(tt, L)a__length#(mark(L))mark#(cons(X1, X2))mark#(X1)
a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))a__isNat#(length(V1))a__isNatList#(V1)
mark#(isNatList(X))a__isNatList#(X)mark#(and(X1, X2))mark#(X1)
a__isNatIList#(cons(V1, V2))a__isNat#(V1)mark#(and(X1, X2))a__and#(mark(X1), X2)
mark#(U11(X1, X2))a__U11#(mark(X1), X2)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


The following SCCs where found

a__isNatList#(cons(V1, V2)) → a__isNat#(V1)mark#(U11(X1, X2)) → mark#(X1)
a__U11#(tt, L) → a__length#(mark(L))mark#(isNat(X)) → a__isNat#(X)
mark#(isNatIList(X)) → a__isNatIList#(X)mark#(cons(X1, X2)) → mark#(X1)
a__length#(cons(N, L)) → a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__length#(cons(N, L)) → a__and#(a__isNatList(L), isNat(N))
a__isNatIList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatIList(V2))a__isNat#(s(V1)) → a__isNat#(V1)
a__isNatList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatList(V2))a__isNat#(length(V1)) → a__isNatList#(V1)
mark#(length(X)) → a__length#(mark(X))mark#(isNatList(X)) → a__isNatList#(X)
mark#(and(X1, X2)) → mark#(X1)a__isNatIList#(cons(V1, V2)) → a__isNat#(V1)
a__isNatIList#(V) → a__isNatList#(V)mark#(and(X1, X2)) → a__and#(mark(X1), X2)
a__U11#(tt, L) → mark#(L)a__and#(tt, X) → mark#(X)
mark#(length(X)) → mark#(X)mark#(U11(X1, X2)) → a__U11#(mark(X1), X2)
mark#(s(X)) → mark#(X)a__length#(cons(N, L)) → a__isNatList#(L)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__isNatList#(cons(V1, V2))a__isNat#(V1)mark#(U11(X1, X2))mark#(X1)
a__U11#(tt, L)a__length#(mark(L))mark#(isNat(X))a__isNat#(X)
mark#(isNatIList(X))a__isNatIList#(X)mark#(cons(X1, X2))mark#(X1)
a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))
a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))a__isNat#(s(V1))a__isNat#(V1)
a__isNat#(length(V1))a__isNatList#(V1)mark#(isNatList(X))a__isNatList#(X)
mark#(length(X))a__length#(mark(X))a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))
mark#(and(X1, X2))mark#(X1)a__isNatIList#(cons(V1, V2))a__isNat#(V1)
a__isNatIList#(V)a__isNatList#(V)mark#(and(X1, X2))a__and#(mark(X1), X2)
a__U11#(tt, L)mark#(L)a__and#(tt, X)mark#(X)
mark#(U11(X1, X2))a__U11#(mark(X1), X2)mark#(length(X))mark#(X)
mark#(s(X))mark#(X)a__length#(cons(N, L))a__isNatList#(L)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
mark(U11(X1, X2))a__U11(mark(X1), X2)a__length(X)length(X)
a__isNat(0)tta__U11(tt, L)s(a__length(mark(L)))
a__isNat(X)isNat(X)a__isNatList(nil)tt
a__isNat(s(V1))a__isNat(V1)mark(nil)nil
a__isNat(length(V1))a__isNatList(V1)mark(tt)tt
a__U11(X1, X2)U11(X1, X2)mark(0)0
a__and(X1, X2)and(X1, X2)mark(length(X))a__length(mark(X))
a__and(tt, X)mark(X)a__zeroszeros
mark(isNat(X))a__isNat(X)a__isNatIList(X)isNatIList(X)
mark(zeros)a__zerosa__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))
a__isNatIList(V)a__isNatList(V)mark(and(X1, X2))a__and(mark(X1), X2)
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__zeroscons(0, zeros)
a__isNatIList(zeros)tta__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__isNatIList#(V)a__isNatList#(V)a__isNatIList#(cons(V1, V2))a__isNat#(V1)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__isNatList#(cons(V1, V2))a__isNat#(V1)mark#(U11(X1, X2))mark#(X1)
a__U11#(tt, L)a__length#(mark(L))mark#(isNat(X))a__isNat#(X)
mark#(isNatIList(X))a__isNatIList#(X)mark#(cons(X1, X2))mark#(X1)
a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))
a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))a__isNat#(s(V1))a__isNat#(V1)
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))a__isNat#(length(V1))a__isNatList#(V1)
mark#(isNatList(X))a__isNatList#(X)mark#(length(X))a__length#(mark(X))
mark#(and(X1, X2))mark#(X1)mark#(and(X1, X2))a__and#(mark(X1), X2)
a__U11#(tt, L)mark#(L)a__and#(tt, X)mark#(X)
mark#(length(X))mark#(X)mark#(U11(X1, X2))a__U11#(mark(X1), X2)
mark#(s(X))mark#(X)a__length#(cons(N, L))a__isNatList#(L)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, zeros, tt, a__isNat, length, U11, a__U11, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
mark(U11(X1, X2))a__U11(mark(X1), X2)a__length(X)length(X)
a__isNat(0)tta__U11(tt, L)s(a__length(mark(L)))
a__isNat(X)isNat(X)a__isNatList(nil)tt
a__isNat(s(V1))a__isNat(V1)mark(nil)nil
a__isNat(length(V1))a__isNatList(V1)mark(tt)tt
a__U11(X1, X2)U11(X1, X2)mark(0)0
a__and(X1, X2)and(X1, X2)mark(length(X))a__length(mark(X))
a__and(tt, X)mark(X)a__zeroszeros
mark(isNat(X))a__isNat(X)a__isNatIList(X)isNatIList(X)
mark(zeros)a__zerosa__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))
a__isNatIList(V)a__isNatList(V)mark(and(X1, X2))a__and(mark(X1), X2)
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__zeroscons(0, zeros)
a__isNatIList(zeros)tta__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(U11(X1, X2))mark#(X1)a__isNat#(length(V1))a__isNatList#(V1)
mark#(length(X))a__length#(mark(X))mark#(U11(X1, X2))a__U11#(mark(X1), X2)
mark#(length(X))mark#(X)

Problem 4: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__isNatList#(cons(V1, V2))a__isNat#(V1)a__U11#(tt, L)a__length#(mark(L))
mark#(isNat(X))a__isNat#(X)mark#(isNatIList(X))a__isNatIList#(X)
mark#(cons(X1, X2))mark#(X1)a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)
a__length#(cons(N, L))a__and#(a__isNatList(L), isNat(N))a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__isNat#(s(V1))a__isNat#(V1)a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))
mark#(isNatList(X))a__isNatList#(X)mark#(and(X1, X2))mark#(X1)
mark#(and(X1, X2))a__and#(mark(X1), X2)a__U11#(tt, L)mark#(L)
a__and#(tt, X)mark#(X)mark#(s(X))mark#(X)
a__length#(cons(N, L))a__isNatList#(L)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


The following SCCs where found

a__U11#(tt, L) → a__length#(mark(L))a__length#(cons(N, L)) → a__U11#(a__and(a__isNatList(L), isNat(N)), L)

a__isNat#(s(V1)) → a__isNat#(V1)

mark#(and(X1, X2)) → mark#(X1)mark#(and(X1, X2)) → a__and#(mark(X1), X2)
mark#(isNatIList(X)) → a__isNatIList#(X)a__and#(tt, X) → mark#(X)
mark#(cons(X1, X2)) → mark#(X1)mark#(s(X)) → mark#(X)
a__isNatIList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatIList(V2))mark#(isNatList(X)) → a__isNatList#(X)
a__isNatList#(cons(V1, V2)) → a__and#(a__isNat(V1), isNatList(V2))

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__U11#(tt, L)a__length#(mark(L))a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


Polynomial Interpretation

Improved Usable rules

mark(cons(X1, X2))cons(mark(X1), X2)mark(isNatIList(X))a__isNatIList(X)
mark(U11(X1, X2))a__U11(mark(X1), X2)a__length(X)length(X)
a__isNat(0)tta__U11(tt, L)s(a__length(mark(L)))
a__isNat(X)isNat(X)a__isNatList(nil)tt
a__isNat(s(V1))a__isNat(V1)mark(nil)nil
a__isNat(length(V1))a__isNatList(V1)mark(tt)tt
a__U11(X1, X2)U11(X1, X2)mark(0)0
a__and(X1, X2)and(X1, X2)mark(length(X))a__length(mark(X))
a__and(tt, X)mark(X)a__zeroszeros
mark(isNat(X))a__isNat(X)a__isNatIList(X)isNatIList(X)
mark(zeros)a__zerosa__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))
a__isNatIList(V)a__isNatList(V)mark(and(X1, X2))a__and(mark(X1), X2)
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))mark(s(X))s(mark(X))
mark(isNatList(X))a__isNatList(X)a__zeroscons(0, zeros)
a__isNatIList(zeros)tta__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)a__isNatList(X)isNatList(X)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__length#(cons(N, L))a__U11#(a__and(a__isNatList(L), isNat(N)), L)

Problem 8: DependencyGraph



Dependency Pair Problem

Dependency Pairs

a__U11#(tt, L)a__length#(mark(L))

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, zeros, tt, a__isNat, length, U11, a__U11, nil, cons

Strategy


There are no SCCs!

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(and(X1, X2))mark#(X1)mark#(and(X1, X2))a__and#(mark(X1), X2)
mark#(isNatIList(X))a__isNatIList#(X)a__and#(tt, X)mark#(X)
mark#(cons(X1, X2))mark#(X1)mark#(s(X))mark#(X)
a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))mark#(isNatList(X))a__isNatList#(X)
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(s(X))mark#(X)

Problem 9: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

mark#(and(X1, X2))mark#(X1)mark#(isNatIList(X))a__isNatIList#(X)
mark#(and(X1, X2))a__and#(mark(X1), X2)a__and#(tt, X)mark#(X)
mark#(cons(X1, X2))mark#(X1)a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))mark#(isNatList(X))a__isNatList#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, zeros, tt, a__isNat, length, U11, a__U11, nil, cons

Strategy


Polynomial Interpretation

Improved Usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

mark#(and(X1, X2))mark#(X1)mark#(and(X1, X2))a__and#(mark(X1), X2)
a__and#(tt, X)mark#(X)mark#(cons(X1, X2))mark#(X1)
a__isNatList#(cons(V1, V2))a__and#(a__isNat(V1), isNatList(V2))

Problem 10: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(isNatIList(X))a__isNatIList#(X)a__isNatIList#(cons(V1, V2))a__and#(a__isNat(V1), isNatIList(V2))
mark#(isNatList(X))a__isNatList#(X)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


There are no SCCs!

Problem 7: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

a__isNat#(s(V1))a__isNat#(V1)

Rewrite Rules

a__zeroscons(0, zeros)a__U11(tt, L)s(a__length(mark(L)))
a__and(tt, X)mark(X)a__isNat(0)tt
a__isNat(length(V1))a__isNatList(V1)a__isNat(s(V1))a__isNat(V1)
a__isNatIList(V)a__isNatList(V)a__isNatIList(zeros)tt
a__isNatIList(cons(V1, V2))a__and(a__isNat(V1), isNatIList(V2))a__isNatList(nil)tt
a__isNatList(cons(V1, V2))a__and(a__isNat(V1), isNatList(V2))a__length(nil)0
a__length(cons(N, L))a__U11(a__and(a__isNatList(L), isNat(N)), L)mark(zeros)a__zeros
mark(U11(X1, X2))a__U11(mark(X1), X2)mark(length(X))a__length(mark(X))
mark(and(X1, X2))a__and(mark(X1), X2)mark(isNat(X))a__isNat(X)
mark(isNatList(X))a__isNatList(X)mark(isNatIList(X))a__isNatIList(X)
mark(cons(X1, X2))cons(mark(X1), X2)mark(0)0
mark(tt)ttmark(s(X))s(mark(X))
mark(nil)nila__zeroszeros
a__U11(X1, X2)U11(X1, X2)a__length(X)length(X)
a__and(X1, X2)and(X1, X2)a__isNat(X)isNat(X)
a__isNatList(X)isNatList(X)a__isNatIList(X)isNatIList(X)

Original Signature

Termination of terms over the following signature is verified: a__zeros, isNatIList, a__length, mark, and, a__and, isNat, a__isNatList, 0, isNatList, a__isNatIList, s, tt, zeros, a__isNat, length, U11, a__U11, cons, nil

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

a__isNat#(s(V1))a__isNat#(V1)