YES
The TRS could be proven terminating. The proof took 57498 ms.
Problem 1 was processed with processor ReductionPairSAT (3356ms). | Problem 2 was processed with processor DependencyGraph (113ms). | | Problem 3 was processed with processor ReductionPairSAT (2386ms). | | | Problem 4 was processed with processor ReductionPairSAT (1624ms). | | | | Problem 5 was processed with processor ReductionPairSAT (1648ms). | | | | | Problem 6 was processed with processor DependencyGraph (65ms). | | | | | | Problem 7 was processed with processor ReductionPairSAT (446ms). | | | | | | Problem 8 was processed with processor ReductionPairSAT (2521ms). | | | | | | | Problem 9 was processed with processor ReductionPairSAT (2204ms). | | | | | | | | Problem 10 was processed with processor ReductionPairSAT (807ms). | | | | | | | | | Problem 11 was processed with processor DependencyGraph (3ms). | | | | | | | | | | Problem 12 was processed with processor ReductionPairSAT (469ms). | | | | | | | | | | Problem 13 was processed with processor ReductionPairSAT (53ms). | | | | | | | | | | | Problem 14 was processed with processor ReductionPairSAT (50ms). | | | | | | | | | | | | Problem 15 was processed with processor ReductionPairSAT (9ms).
mark#(first(X1, X2)) | → | a__first#(mark(X1), mark(X2)) | mark#(dbl(X)) | → | a__dbl#(mark(X)) | |
mark#(half(X)) | → | a__half#(mark(X)) | a__half#(dbl(X)) | → | mark#(X) | |
a__half#(s(s(X))) | → | a__half#(mark(X)) | mark#(recip(X)) | → | mark#(X) | |
a__first#(s(X), cons(Y, Z)) | → | mark#(Y) | a__sqr#(s(X)) | → | a__dbl#(mark(X)) | |
a__dbl#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | mark#(X) | a__add#(s(X), Y) | → | mark#(Y) | |
mark#(add(X1, X2)) | → | mark#(X1) | a__add#(s(X), Y) | → | mark#(X) | |
mark#(first(X1, X2)) | → | mark#(X2) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) | → | mark#(N) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | a__half#(s(s(X))) | → | mark#(X) | |
mark#(cons(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | mark#(X) | |
a__add#(0, X) | → | mark#(X) | mark#(dbl(X)) | → | mark#(X) | |
mark#(terms(X)) | → | mark#(X) | mark#(sqr(X)) | → | mark#(X) | |
mark#(half(X)) | → | mark#(X) | mark#(sqr(X)) | → | a__sqr#(mark(X)) | |
mark#(first(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | a__sqr#(mark(X)) | |
a__terms#(N) | → | a__sqr#(mark(N)) | a__dbl#(s(X)) | → | a__dbl#(mark(X)) | |
a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
half: 1
dbl: 1
a__add: 1 2
add: 1 2
a__sqr#: 1
a__dbl#: 1
a__first#: collapses to 2
a__sqr: 1
cons: collapses to 1
a__terms#: 1
sqr: 1
mark: collapses to 1
recip: collapses to 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
s: 1
a__dbl: 1
first: 1 2
a__first: 1 2
nil: all arguments are removed from nil
a__terms(X) → terms(X) | mark(cons(X1, X2)) → cons(mark(X1), X2) |
a__first(X1, X2) → first(X1, X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(first(X1, X2)) → a__first#(mark(X1), mark(X2)) |
mark#(dbl(X)) | → | a__dbl#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__half#(dbl(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(recip(X)) | → | mark#(X) | a__first#(s(X), cons(Y, Z)) | → | mark#(Y) | |
a__sqr#(s(X)) | → | a__dbl#(mark(X)) | a__dbl#(s(X)) | → | mark#(X) | |
mark#(add(X1, X2)) | → | mark#(X2) | mark#(s(X)) | → | mark#(X) | |
a__add#(s(X), Y) | → | mark#(Y) | mark#(add(X1, X2)) | → | mark#(X1) | |
a__add#(s(X), Y) | → | mark#(X) | mark#(first(X1, X2)) | → | mark#(X2) | |
mark#(terms(X)) | → | a__terms#(mark(X)) | a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | |
a__terms#(N) | → | mark#(N) | mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | |
a__half#(s(s(X))) | → | mark#(X) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | mark#(X) | a__add#(0, X) | → | mark#(X) | |
mark#(dbl(X)) | → | mark#(X) | mark#(terms(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | a__sqr#(mark(X)) | mark#(first(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | a__dbl#(s(X)) | → | a__dbl#(mark(X)) | |
a__terms#(N) | → | a__sqr#(mark(N)) | a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
mark#(dbl(X)) → a__dbl#(mark(X)) | mark#(half(X)) → a__half#(mark(X)) |
a__half#(dbl(X)) → mark#(X) | a__half#(s(s(X))) → a__half#(mark(X)) |
mark#(recip(X)) → mark#(X) | a__sqr#(s(X)) → a__dbl#(mark(X)) |
a__dbl#(s(X)) → mark#(X) | mark#(add(X1, X2)) → mark#(X2) |
mark#(s(X)) → mark#(X) | a__add#(s(X), Y) → mark#(Y) |
mark#(add(X1, X2)) → mark#(X1) | a__add#(s(X), Y) → mark#(X) |
mark#(first(X1, X2)) → mark#(X2) | mark#(terms(X)) → a__terms#(mark(X)) |
a__sqr#(s(X)) → a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) → mark#(N) |
mark#(add(X1, X2)) → a__add#(mark(X1), mark(X2)) | a__half#(s(s(X))) → mark#(X) |
mark#(cons(X1, X2)) → mark#(X1) | a__sqr#(s(X)) → mark#(X) |
a__add#(0, X) → mark#(X) | mark#(dbl(X)) → mark#(X) |
mark#(terms(X)) → mark#(X) | mark#(sqr(X)) → mark#(X) |
mark#(half(X)) → mark#(X) | mark#(sqr(X)) → a__sqr#(mark(X)) |
mark#(first(X1, X2)) → mark#(X1) | a__sqr#(s(X)) → a__sqr#(mark(X)) |
a__dbl#(s(X)) → a__dbl#(mark(X)) | a__terms#(N) → a__sqr#(mark(N)) |
a__add#(s(X), Y) → a__add#(mark(X), mark(Y)) |
mark#(dbl(X)) | → | a__dbl#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__half#(dbl(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(recip(X)) | → | mark#(X) | a__sqr#(s(X)) | → | a__dbl#(mark(X)) | |
a__dbl#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | mark#(X) | a__add#(s(X), Y) | → | mark#(Y) | |
mark#(add(X1, X2)) | → | mark#(X1) | a__add#(s(X), Y) | → | mark#(X) | |
mark#(terms(X)) | → | a__terms#(mark(X)) | mark#(first(X1, X2)) | → | mark#(X2) | |
a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) | → | mark#(N) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | a__half#(s(s(X))) | → | mark#(X) | |
mark#(cons(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | mark#(X) | |
a__add#(0, X) | → | mark#(X) | mark#(dbl(X)) | → | mark#(X) | |
mark#(terms(X)) | → | mark#(X) | mark#(sqr(X)) | → | mark#(X) | |
mark#(half(X)) | → | mark#(X) | mark#(sqr(X)) | → | a__sqr#(mark(X)) | |
mark#(first(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | a__sqr#(mark(X)) | |
a__dbl#(s(X)) | → | a__dbl#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl#: collapses to 1
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | mark(cons(X1, X2)) → cons(mark(X1), X2) |
a__first(X1, X2) → first(X1, X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__add#(s(X), Y) → mark#(Y) |
mark#(dbl(X)) | → | a__dbl#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__half#(dbl(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(recip(X)) | → | mark#(X) | a__sqr#(s(X)) | → | a__dbl#(mark(X)) | |
a__dbl#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X1) | |
a__add#(s(X), Y) | → | mark#(X) | mark#(first(X1, X2)) | → | mark#(X2) | |
mark#(terms(X)) | → | a__terms#(mark(X)) | a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | |
a__terms#(N) | → | mark#(N) | mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | |
a__half#(s(s(X))) | → | mark#(X) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | mark#(X) | a__add#(0, X) | → | mark#(X) | |
mark#(dbl(X)) | → | mark#(X) | mark#(terms(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | a__sqr#(mark(X)) | mark#(first(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
a__dbl#(s(X)) | → | a__dbl#(mark(X)) | a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl#: 1
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | mark(cons(X1, X2)) → cons(mark(X1), X2) |
a__first(X1, X2) → first(X1, X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__half#(s(s(X))) → mark#(X) |
mark#(dbl(X)) | → | a__dbl#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__half#(dbl(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(recip(X)) | → | mark#(X) | a__sqr#(s(X)) | → | a__dbl#(mark(X)) | |
a__dbl#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X2) | |
mark#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X1) | |
a__add#(s(X), Y) | → | mark#(X) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
mark#(first(X1, X2)) | → | mark#(X2) | a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | |
a__terms#(N) | → | mark#(N) | mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | |
mark#(cons(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | mark#(X) | |
a__add#(0, X) | → | mark#(X) | mark#(dbl(X)) | → | mark#(X) | |
mark#(terms(X)) | → | mark#(X) | mark#(sqr(X)) | → | mark#(X) | |
mark#(half(X)) | → | mark#(X) | mark#(sqr(X)) | → | a__sqr#(mark(X)) | |
mark#(first(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | a__sqr#(mark(X)) | |
a__dbl#(s(X)) | → | a__dbl#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl#: 1
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | mark(cons(X1, X2)) → cons(mark(X1), X2) |
a__first(X1, X2) → first(X1, X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__dbl#(s(X)) → mark#(X) |
mark#(dbl(X)) | → | a__dbl#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__half#(dbl(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(recip(X)) | → | mark#(X) | a__sqr#(s(X)) | → | a__dbl#(mark(X)) | |
mark#(add(X1, X2)) | → | mark#(X2) | mark#(s(X)) | → | mark#(X) | |
mark#(add(X1, X2)) | → | mark#(X1) | a__add#(s(X), Y) | → | mark#(X) | |
mark#(first(X1, X2)) | → | mark#(X2) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) | → | mark#(N) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | mark#(X) | a__add#(0, X) | → | mark#(X) | |
mark#(dbl(X)) | → | mark#(X) | mark#(terms(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | a__sqr#(mark(X)) | mark#(first(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
a__dbl#(s(X)) | → | a__dbl#(mark(X)) | a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
mark#(half(X)) → a__half#(mark(X)) | a__half#(dbl(X)) → mark#(X) |
a__half#(s(s(X))) → a__half#(mark(X)) | mark#(recip(X)) → mark#(X) |
mark#(add(X1, X2)) → mark#(X2) | mark#(s(X)) → mark#(X) |
mark#(add(X1, X2)) → mark#(X1) | a__add#(s(X), Y) → mark#(X) |
mark#(first(X1, X2)) → mark#(X2) | mark#(terms(X)) → a__terms#(mark(X)) |
a__sqr#(s(X)) → a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) → mark#(N) |
mark#(add(X1, X2)) → a__add#(mark(X1), mark(X2)) | mark#(cons(X1, X2)) → mark#(X1) |
a__sqr#(s(X)) → mark#(X) | a__add#(0, X) → mark#(X) |
mark#(dbl(X)) → mark#(X) | mark#(terms(X)) → mark#(X) |
mark#(sqr(X)) → mark#(X) | mark#(half(X)) → mark#(X) |
mark#(sqr(X)) → a__sqr#(mark(X)) | mark#(first(X1, X2)) → mark#(X1) |
a__sqr#(s(X)) → a__sqr#(mark(X)) | a__terms#(N) → a__sqr#(mark(N)) |
a__add#(s(X), Y) → a__add#(mark(X), mark(Y)) |
a__dbl#(s(X)) → a__dbl#(mark(X)) |
a__dbl#(s(X)) | → | a__dbl#(mark(X)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: collapses to 1
terms: all arguments are removed from terms
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__terms: all arguments are removed from a__terms
0: all arguments are removed from 0
a__dbl#: 1
a__dbl: 1
s: 1
a__first: collapses to 1
first: collapses to 1
a__sqr: 1
cons: collapses to 2
nil: all arguments are removed from nil
a__terms(X) → terms(X) | a__first(X1, X2) → first(X1, X2) |
mark(cons(X1, X2)) → cons(mark(X1), X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__dbl#(s(X)) → a__dbl#(mark(X)) |
mark#(half(X)) | → | a__half#(mark(X)) | a__half#(dbl(X)) | → | mark#(X) | |
a__half#(s(s(X))) | → | a__half#(mark(X)) | mark#(recip(X)) | → | mark#(X) | |
mark#(add(X1, X2)) | → | mark#(X2) | mark#(s(X)) | → | mark#(X) | |
mark#(add(X1, X2)) | → | mark#(X1) | a__add#(s(X), Y) | → | mark#(X) | |
mark#(first(X1, X2)) | → | mark#(X2) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
a__sqr#(s(X)) | → | a__add#(a__sqr(mark(X)), a__dbl(mark(X))) | a__terms#(N) | → | mark#(N) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | mark#(X) | a__add#(0, X) | → | mark#(X) | |
mark#(dbl(X)) | → | mark#(X) | mark#(terms(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | a__sqr#(mark(X)) | mark#(first(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | mark(cons(X1, X2)) → cons(mark(X1), X2) |
a__first(X1, X2) → first(X1, X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__sqr#(s(X)) → a__add#(a__sqr(mark(X)), a__dbl(mark(X))) |
mark#(first(X1, X2)) | → | mark#(X2) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
a__terms#(N) | → | mark#(N) | mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | |
mark#(cons(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | mark#(X) | |
mark#(half(X)) | → | a__half#(mark(X)) | a__add#(0, X) | → | mark#(X) | |
mark#(dbl(X)) | → | mark#(X) | a__half#(dbl(X)) | → | mark#(X) | |
mark#(terms(X)) | → | mark#(X) | a__half#(s(s(X))) | → | a__half#(mark(X)) | |
mark#(sqr(X)) | → | mark#(X) | mark#(recip(X)) | → | mark#(X) | |
mark#(half(X)) | → | mark#(X) | mark#(sqr(X)) | → | a__sqr#(mark(X)) | |
mark#(first(X1, X2)) | → | mark#(X1) | mark#(add(X1, X2)) | → | mark#(X2) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | a__terms#(N) | → | a__sqr#(mark(N)) | |
mark#(s(X)) | → | mark#(X) | mark#(add(X1, X2)) | → | mark#(X1) | |
a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) | a__add#(s(X), Y) | → | mark#(X) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | a__first(X1, X2) → first(X1, X2) |
mark(cons(X1, X2)) → cons(mark(X1), X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__terms#(N) → mark#(N) |
mark#(first(X1, X2)) | → | mark#(X2) | mark#(terms(X)) | → | a__terms#(mark(X)) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | mark#(X) | mark#(half(X)) | → | a__half#(mark(X)) | |
a__add#(0, X) | → | mark#(X) | mark#(dbl(X)) | → | mark#(X) | |
a__half#(dbl(X)) | → | mark#(X) | mark#(terms(X)) | → | mark#(X) | |
a__half#(s(s(X))) | → | a__half#(mark(X)) | mark#(sqr(X)) | → | mark#(X) | |
mark#(recip(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(sqr(X)) | → | a__sqr#(mark(X)) | mark#(add(X1, X2)) | → | mark#(X2) | |
mark#(first(X1, X2)) | → | mark#(X1) | a__sqr#(s(X)) | → | a__sqr#(mark(X)) | |
mark#(s(X)) | → | mark#(X) | a__terms#(N) | → | a__sqr#(mark(N)) | |
mark#(add(X1, X2)) | → | mark#(X1) | a__add#(s(X), Y) | → | a__add#(mark(X), mark(Y)) | |
a__add#(s(X), Y) | → | mark#(X) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: collapses to 1
a__terms#: 1
a__add#: 1 2
a__half#: collapses to 1
terms: 1
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: collapses to 1
mark#: collapses to 1
a__terms: 1
0: all arguments are removed from 0
a__dbl: 1
s: 1
a__first: 1 2
first: 1 2
a__sqr: 1
nil: all arguments are removed from nil
cons: collapses to 1
a__terms(X) → terms(X) | a__first(X1, X2) → first(X1, X2) |
mark(cons(X1, X2)) → cons(mark(X1), X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(first(X1, X2)) → mark#(X2) | mark#(terms(X)) → a__terms#(mark(X)) |
a__sqr#(s(X)) → mark#(X) | a__add#(0, X) → mark#(X) |
mark#(dbl(X)) → mark#(X) | a__half#(dbl(X)) → mark#(X) |
mark#(terms(X)) → mark#(X) | a__half#(s(s(X))) → a__half#(mark(X)) |
mark#(sqr(X)) → mark#(X) | mark#(sqr(X)) → a__sqr#(mark(X)) |
mark#(add(X1, X2)) → mark#(X2) | mark#(first(X1, X2)) → mark#(X1) |
a__terms#(N) → a__sqr#(mark(N)) | mark#(s(X)) → mark#(X) |
mark#(add(X1, X2)) → mark#(X1) | a__add#(s(X), Y) → a__add#(mark(X), mark(Y)) |
a__add#(s(X), Y) → mark#(X) |
mark#(recip(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(add(X1, X2)) | → | a__add#(mark(X1), mark(X2)) | mark#(cons(X1, X2)) | → | mark#(X1) | |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) | mark#(half(X)) | → | a__half#(mark(X)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__sqr#(s(X)) → a__sqr#(mark(X)) |
mark#(recip(X)) → mark#(X) | mark#(half(X)) → mark#(X) |
mark#(cons(X1, X2)) → mark#(X1) |
a__sqr#(s(X)) | → | a__sqr#(mark(X)) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: collapses to 1
terms: all arguments are removed from terms
sqr: 1
half: collapses to 1
mark: collapses to 1
dbl: 1
recip: collapses to 1
add: 1 2
a__add: 1 2
a__sqr#: 1
a__terms: all arguments are removed from a__terms
0: all arguments are removed from 0
a__dbl: 1
s: 1
a__first: collapses to 1
first: collapses to 1
a__sqr: 1
cons: all arguments are removed from cons
nil: all arguments are removed from nil
a__terms(X) → terms(X) | a__first(X1, X2) → first(X1, X2) |
mark(cons(X1, X2)) → cons(mark(X1), X2) | a__half(dbl(X)) → mark(X) |
a__add(s(X), Y) → s(a__add(mark(X), mark(Y))) | mark(half(X)) → a__half(mark(X)) |
mark(sqr(X)) → a__sqr(mark(X)) | a__half(X) → half(X) |
a__half(s(s(X))) → s(a__half(mark(X))) | a__first(0, X) → nil |
a__add(X1, X2) → add(X1, X2) | a__dbl(s(X)) → s(s(a__dbl(mark(X)))) |
mark(dbl(X)) → a__dbl(mark(X)) | mark(nil) → nil |
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N))) | mark(add(X1, X2)) → a__add(mark(X1), mark(X2)) |
a__add(0, X) → mark(X) | a__dbl(X) → dbl(X) |
mark(terms(X)) → a__terms(mark(X)) | mark(0) → 0 |
a__half(0) → 0 | mark(first(X1, X2)) → a__first(mark(X1), mark(X2)) |
a__dbl(0) → 0 | a__sqr(0) → 0 |
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__half(s(0)) → 0 |
a__sqr(X) → sqr(X) | mark(s(X)) → s(mark(X)) |
mark(recip(X)) → recip(mark(X)) | a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z)) |
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
a__sqr#(s(X)) → a__sqr#(mark(X)) |
mark#(recip(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) | |
mark#(cons(X1, X2)) | → | mark#(X1) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: all arguments are removed from a__half
terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
half: collapses to 1
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: collapses to 1
add: all arguments are removed from add
a__add: all arguments are removed from a__add
mark#: collapses to 1
a__terms: all arguments are removed from a__terms
0: all arguments are removed from 0
a__dbl: 1
s: all arguments are removed from s
a__first: 1 2
first: all arguments are removed from first
a__sqr: all arguments are removed from a__sqr
cons: 1 2
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(cons(X1, X2)) → mark#(X1) |
mark#(recip(X)) | → | mark#(X) | mark#(half(X)) | → | mark#(X) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, first, a__first, a__sqr, nil, cons
a__half: all arguments are removed from a__half
terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
half: 1
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: collapses to 1
add: all arguments are removed from add
a__add: all arguments are removed from a__add
mark#: collapses to 1
a__terms: all arguments are removed from a__terms
0: all arguments are removed from 0
a__dbl: 1
s: all arguments are removed from s
a__first: 1 2
first: collapses to 2
a__sqr: all arguments are removed from a__sqr
cons: 1 2
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(half(X)) → mark#(X) |
mark#(recip(X)) | → | mark#(X) |
a__terms(N) | → | cons(recip(a__sqr(mark(N))), terms(s(N))) | a__sqr(0) | → | 0 | |
a__sqr(s(X)) | → | s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) | a__dbl(0) | → | 0 | |
a__dbl(s(X)) | → | s(s(a__dbl(mark(X)))) | a__add(0, X) | → | mark(X) | |
a__add(s(X), Y) | → | s(a__add(mark(X), mark(Y))) | a__first(0, X) | → | nil | |
a__first(s(X), cons(Y, Z)) | → | cons(mark(Y), first(X, Z)) | a__half(0) | → | 0 | |
a__half(s(0)) | → | 0 | a__half(s(s(X))) | → | s(a__half(mark(X))) | |
a__half(dbl(X)) | → | mark(X) | mark(terms(X)) | → | a__terms(mark(X)) | |
mark(sqr(X)) | → | a__sqr(mark(X)) | mark(add(X1, X2)) | → | a__add(mark(X1), mark(X2)) | |
mark(dbl(X)) | → | a__dbl(mark(X)) | mark(first(X1, X2)) | → | a__first(mark(X1), mark(X2)) | |
mark(half(X)) | → | a__half(mark(X)) | mark(cons(X1, X2)) | → | cons(mark(X1), X2) | |
mark(recip(X)) | → | recip(mark(X)) | mark(s(X)) | → | s(mark(X)) | |
mark(0) | → | 0 | mark(nil) | → | nil | |
a__terms(X) | → | terms(X) | a__sqr(X) | → | sqr(X) | |
a__add(X1, X2) | → | add(X1, X2) | a__dbl(X) | → | dbl(X) | |
a__first(X1, X2) | → | first(X1, X2) | a__half(X) | → | half(X) |
Termination of terms over the following signature is verified: a__half, terms, sqr, half, dbl, mark, recip, add, a__add, a__terms, 0, s, a__dbl, a__first, first, a__sqr, cons, nil
a__half: all arguments are removed from a__half
terms: all arguments are removed from terms
sqr: all arguments are removed from sqr
half: all arguments are removed from half
mark: all arguments are removed from mark
dbl: all arguments are removed from dbl
recip: 1
add: 1 2
a__add: all arguments are removed from a__add
mark#: 1
a__terms: all arguments are removed from a__terms
0: all arguments are removed from 0
a__dbl: collapses to 1
s: all arguments are removed from s
a__first: collapses to 1
first: all arguments are removed from first
a__sqr: all arguments are removed from a__sqr
cons: 1 2
nil: all arguments are removed from nil
There are no usable rules.
The dependency pairs and usable rules are stronlgy conservative!
The following dependency pairs (at least) can be eliminated according to the given precedence.
mark#(recip(X)) → mark#(X) |