TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60040 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (395ms).
 | – Problem 2 was processed with processor ReductionPairSAT (3962ms).
 |    | – Problem 8 was processed with processor ReductionPairSAT (4171ms).
 |    |    | – Problem 10 was processed with processor ReductionPairSAT (4255ms).
 |    |    |    | – Problem 11 was processed with processor ReductionPairSAT (5292ms).
 |    |    |    |    | – Problem 12 was processed with processor ReductionPairSAT (3123ms).
 |    |    |    |    |    | – Problem 13 was processed with processor ReductionPairSAT (4242ms).
 |    |    |    |    |    |    | – Problem 14 was processed with processor ReductionPairSAT (3688ms).
 |    |    |    |    |    |    |    | – Problem 15 was processed with processor ReductionPairSAT (3621ms).
 |    |    |    |    |    |    |    |    | – Problem 16 was processed with processor ReductionPairSAT (4126ms).
 |    |    |    |    |    |    |    |    |    | – Problem 17 remains open; application of the following processors failed [DependencyGraph (2ms), ReductionPairSAT (timeout)].
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 7 was processed with processor ReductionPairSAT (63ms).
 |    |    | – Problem 9 was processed with processor ReductionPairSAT (20ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (0ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 17

Dependency Pairs

mark#(p(X))mark#(X)mark#(f(X))active#(f(mark(X)))
active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

mark#(cons(X1, X2))active#(cons(mark(X1), X2))cons#(mark(X1), X2)cons#(X1, X2)
active#(f(s(0)))f#(p(s(0)))f#(active(X))f#(X)
p#(mark(X))p#(X)active#(f(s(0)))mark#(f(p(s(0))))
mark#(s(X))s#(mark(X))mark#(s(X))mark#(X)
cons#(X1, mark(X2))cons#(X1, X2)f#(mark(X))f#(X)
mark#(f(X))f#(mark(X))mark#(cons(X1, X2))cons#(mark(X1), X2)
active#(f(0))s#(0)mark#(0)active#(0)
mark#(s(X))active#(s(mark(X)))active#(f(s(0)))p#(s(0))
mark#(cons(X1, X2))mark#(X1)cons#(active(X1), X2)cons#(X1, X2)
mark#(f(X))mark#(X)mark#(p(X))active#(p(mark(X)))
mark#(f(X))active#(f(mark(X)))s#(mark(X))s#(X)
active#(f(s(0)))s#(0)cons#(X1, active(X2))cons#(X1, X2)
active#(f(0))cons#(0, f(s(0)))mark#(p(X))p#(mark(X))
mark#(p(X))mark#(X)active#(f(0))mark#(cons(0, f(s(0))))
active#(p(s(X)))mark#(X)active#(f(0))f#(s(0))
s#(active(X))s#(X)p#(active(X))p#(X)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


The following SCCs where found

p#(mark(X)) → p#(X)p#(active(X)) → p#(X)

f#(active(X)) → f#(X)f#(mark(X)) → f#(X)

mark#(0) → active#(0)mark#(cons(X1, X2)) → active#(cons(mark(X1), X2))
mark#(s(X)) → active#(s(mark(X)))active#(f(0)) → mark#(cons(0, f(s(0))))
mark#(p(X)) → mark#(X)mark#(cons(X1, X2)) → mark#(X1)
active#(p(s(X))) → mark#(X)mark#(s(X)) → mark#(X)
mark#(p(X)) → active#(p(mark(X)))mark#(f(X)) → mark#(X)
mark#(f(X)) → active#(f(mark(X)))active#(f(s(0))) → mark#(f(p(s(0))))

cons#(X1, active(X2)) → cons#(X1, X2)cons#(mark(X1), X2) → cons#(X1, X2)
cons#(X1, mark(X2)) → cons#(X1, X2)cons#(active(X1), X2) → cons#(X1, X2)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

Problem 2: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(0)active#(0)mark#(cons(X1, X2))active#(cons(mark(X1), X2))
mark#(s(X))active#(s(mark(X)))active#(f(0))mark#(cons(0, f(s(0))))
mark#(p(X))mark#(X)active#(p(s(X)))mark#(X)
mark#(cons(X1, X2))mark#(X1)mark#(s(X))mark#(X)
mark#(p(X))active#(p(mark(X)))mark#(f(X))mark#(X)
mark#(f(X))active#(f(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active# < f = s = p = active = mark = mark# < 0 = cons

Argument Filtering

f: all arguments are removed from f
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
cons: all arguments are removed from cons

Status

f: multiset
0: multiset
s: multiset
p: multiset
active: multiset
mark: multiset
mark#: multiset
cons: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(cons(X1, X2)) → active#(cons(mark(X1), X2))

Problem 8: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(0)active#(0)mark#(s(X))active#(s(mark(X)))
mark#(p(X))mark#(X)active#(f(0))mark#(cons(0, f(s(0))))
mark#(cons(X1, X2))mark#(X1)active#(p(s(X)))mark#(X)
mark#(s(X))mark#(X)mark#(f(X))mark#(X)
mark#(p(X))active#(p(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))
mark#(f(X))active#(f(mark(X)))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active# < f = 0 = s = p = active = mark = mark# = cons

Argument Filtering

f: all arguments are removed from f
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
cons: all arguments are removed from cons

Status

f: multiset
0: multiset
s: multiset
p: multiset
active: multiset
mark: multiset
mark#: multiset
cons: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(0) → active#(0)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(s(X))active#(s(mark(X)))active#(f(0))mark#(cons(0, f(s(0))))
mark#(p(X))mark#(X)active#(p(s(X)))mark#(X)
mark#(cons(X1, X2))mark#(X1)mark#(s(X))mark#(X)
mark#(p(X))active#(p(mark(X)))mark#(f(X))mark#(X)
mark#(f(X))active#(f(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

p < f < active = active# < 0 = s = mark = mark# = cons

Argument Filtering

f: collapses to 1
0: all arguments are removed from 0
s: 1
p: collapses to 1
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
cons: collapses to 1

Status

0: multiset
s: lexicographic with permutation 1 → 1

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

active#(p(s(X))) → mark#(X)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(s(X))active#(s(mark(X)))mark#(p(X))mark#(X)
active#(f(0))mark#(cons(0, f(s(0))))mark#(cons(X1, X2))mark#(X1)
mark#(s(X))mark#(X)mark#(f(X))mark#(X)
mark#(p(X))active#(p(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))
mark#(f(X))active#(f(mark(X)))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active# < f = s = mark# < cons < 0 = p = active = mark

Argument Filtering

f: all arguments are removed from f
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
cons: all arguments are removed from cons

Status

f: multiset
0: multiset
s: multiset
p: multiset
active: multiset
mark: multiset
mark#: multiset
cons: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(p(X)) → active#(p(mark(X)))

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(s(X))active#(s(mark(X)))active#(f(0))mark#(cons(0, f(s(0))))
mark#(p(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(s(X))mark#(X)mark#(f(X))mark#(X)
mark#(f(X))active#(f(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active = mark < f = mark# < 0 = s = p = active# = cons

Argument Filtering

f: all arguments are removed from f
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: all arguments are removed from active
mark: all arguments are removed from mark
active#: collapses to 1
mark#: all arguments are removed from mark#
cons: all arguments are removed from cons

Status

f: multiset
0: multiset
s: multiset
p: multiset
active: multiset
mark: multiset
mark#: multiset
cons: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(s(X)) → active#(s(mark(X)))

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(p(X))mark#(X)active#(f(0))mark#(cons(0, f(s(0))))
mark#(cons(X1, X2))mark#(X1)mark#(s(X))mark#(X)
mark#(f(X))mark#(X)active#(f(s(0)))mark#(f(p(s(0))))
mark#(f(X))active#(f(mark(X)))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

p = active < active# < f < mark < 0 = s = mark# = cons

Argument Filtering

f: collapses to 1
0: all arguments are removed from 0
s: 1
p: collapses to 1
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
cons: collapses to 1

Status

0: multiset
s: lexicographic with permutation 1 → 1

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(s(X)) → mark#(X)

Problem 14: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

active#(f(0))mark#(cons(0, f(s(0))))mark#(p(X))mark#(X)
mark#(cons(X1, X2))mark#(X1)mark#(f(X))mark#(X)
mark#(f(X))active#(f(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active < 0 < active# < p < s < mark < f = mark# = cons

Argument Filtering

f: 1
0: all arguments are removed from 0
s: collapses to 1
p: collapses to 1
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
cons: collapses to 1

Status

f: lexicographic with permutation 1 → 1
0: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(f(X)) → mark#(X)

Problem 15: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(p(X))mark#(X)active#(f(0))mark#(cons(0, f(s(0))))
mark#(cons(X1, X2))mark#(X1)active#(f(s(0)))mark#(f(p(s(0))))
mark#(f(X))active#(f(mark(X)))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

s < p < active < f = 0 = mark = active# = mark# = cons

Argument Filtering

f: all arguments are removed from f
0: all arguments are removed from 0
s: collapses to 1
p: collapses to 1
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
cons: collapses to 1

Status

f: multiset
0: multiset

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
p(active(X)) → p(X)mark(f(X)) → active(f(mark(X)))
f(mark(X)) → f(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

active#(f(0)) → mark#(cons(0, f(s(0))))

Problem 16: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(p(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(f(X))active#(f(mark(X)))active#(f(s(0)))mark#(f(p(s(0))))

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active < mark < s < active# < mark# < f = 0 = p = cons

Argument Filtering

f: 1
0: all arguments are removed from 0
s: collapses to 1
p: collapses to 1
active: collapses to 1
mark: collapses to 1
active#: collapses to 1
mark#: collapses to 1
cons: 1

Status

f: lexicographic with permutation 1 → 1
0: multiset
cons: lexicographic with permutation 1 → 1

Usable Rules

cons(active(X1), X2) → cons(X1, X2)mark(s(X)) → active(s(mark(X)))
active(f(0)) → mark(cons(0, f(s(0))))active(f(s(0))) → mark(f(p(s(0))))
cons(X1, mark(X2)) → cons(X1, X2)mark(p(X)) → active(p(mark(X)))
active(p(s(X))) → mark(X)p(mark(X)) → p(X)
cons(mark(X1), X2) → cons(X1, X2)mark(cons(X1, X2)) → active(cons(mark(X1), X2))
s(mark(X)) → s(X)f(active(X)) → f(X)
mark(f(X)) → active(f(mark(X)))f(mark(X)) → f(X)
p(active(X)) → p(X)mark(0) → active(0)
s(active(X)) → s(X)cons(X1, active(X2)) → cons(X1, X2)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(cons(X1, X2)) → mark#(X1)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(mark(X1), X2)cons#(X1, X2)
cons#(X1, mark(X2))cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Problem 7: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(X1, mark(X2))cons#(X1, X2)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

mark < active < f = cons# = 0 = s = p = cons

Argument Filtering

f: all arguments are removed from f
cons#: collapses to 2
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: collapses to 1
mark: 1
cons: 1 2

Status

f: multiset
0: multiset
s: multiset
p: multiset
mark: multiset
cons: lexicographic with permutation 1 → 1 2 → 2

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, mark(X2)) → cons#(X1, X2)

Problem 9: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Function Precedence

active < f = cons# = 0 = s = p = mark = cons

Argument Filtering

f: all arguments are removed from f
cons#: collapses to 2
0: all arguments are removed from 0
s: all arguments are removed from s
p: all arguments are removed from p
active: 1
mark: all arguments are removed from mark
cons: 2

Status

f: multiset
0: multiset
s: multiset
p: multiset
active: multiset
mark: multiset
cons: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, active(X2)) → cons#(X1, X2)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

f#(active(X))f#(X)f#(mark(X))f#(X)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

f#(active(X))f#(X)f#(mark(X))f#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

p#(mark(X))p#(X)p#(active(X))p#(X)

Rewrite Rules

active(f(0))mark(cons(0, f(s(0))))active(f(s(0)))mark(f(p(s(0))))
active(p(s(X)))mark(X)mark(f(X))active(f(mark(X)))
mark(0)active(0)mark(cons(X1, X2))active(cons(mark(X1), X2))
mark(s(X))active(s(mark(X)))mark(p(X))active(p(mark(X)))
f(mark(X))f(X)f(active(X))f(X)
cons(mark(X1), X2)cons(X1, X2)cons(X1, mark(X2))cons(X1, X2)
cons(active(X1), X2)cons(X1, X2)cons(X1, active(X2))cons(X1, X2)
s(mark(X))s(X)s(active(X))s(X)
p(mark(X))p(X)p(active(X))p(X)

Original Signature

Termination of terms over the following signature is verified: f, 0, s, p, active, mark, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

p#(mark(X))p#(X)p#(active(X))p#(X)