TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60010 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (3791ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 |    | – Problem 10 was processed with processor ReductionPairSAT (111ms).
 |    |    | – Problem 14 was processed with processor ReductionPairSAT (41ms).
 | – Problem 3 was processed with processor SubtermCriterion (0ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (429ms).
 |    |    | – Problem 15 was processed with processor ReductionPairSAT (237ms).
 |    |    |    | – Problem 18 was processed with processor ReductionPairSAT (108ms).
 | – Problem 5 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (105ms).
 |    |    | – Problem 16 was processed with processor ReductionPairSAT (26ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor ReductionPairSAT (8402ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (4475ms).
 |    |    | – Problem 17 remains open; application of the following processors failed [DependencyGraph (411ms), ReductionPairSAT (16140ms), DependencyGraph (428ms), ReductionPairSAT (12629ms)].

The following open problems remain:



Open Dependency Pair Problem 17

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))mark#(zero(X))mark#(X)
active#(if(false, X, Y))mark#(Y)active#(prod(0, X))mark#(0)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(prod(X1, X2))mark#(X2)
mark#(fact(X))mark#(X)active#(if(true, X, Y))mark#(X)
mark#(prod(X1, X2))mark#(X1)mark#(zero(X))active#(zero(mark(X)))
mark#(fact(X))active#(fact(mark(X)))mark#(add(X1, X2))mark#(X2)
mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X))mark#(X)mark#(p(X))active#(p(mark(X)))
mark#(p(X))mark#(X)active#(zero(s(X)))mark#(false)
active#(p(s(X)))mark#(X)mark#(if(X1, X2, X3))mark#(X1)
active#(zero(0))mark#(true)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(prod(s(X), Y))prod#(X, Y)mark#(zero(X))mark#(X)
fact#(active(X))fact#(X)mark#(fact(X))fact#(mark(X))
active#(fact(X))if#(zero(X), s(0), prod(X, fact(p(X))))active#(prod(0, X))mark#(0)
add#(X1, mark(X2))add#(X1, X2)active#(add(s(X), Y))mark#(s(add(X, Y)))
active#(fact(X))s#(0)if#(X1, X2, active(X3))if#(X1, X2, X3)
mark#(fact(X))mark#(X)mark#(s(X))s#(mark(X))
active#(if(true, X, Y))mark#(X)prod#(mark(X1), X2)prod#(X1, X2)
mark#(add(X1, X2))mark#(X2)prod#(X1, active(X2))prod#(X1, X2)
mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
active#(fact(X))p#(X)active#(fact(X))prod#(X, fact(p(X)))
mark#(true)active#(true)active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))
prod#(X1, mark(X2))prod#(X1, X2)active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X))mark#(X)add#(mark(X1), X2)add#(X1, X2)
mark#(p(X))active#(p(mark(X)))active#(add(s(X), Y))add#(X, Y)
if#(X1, mark(X2), X3)if#(X1, X2, X3)mark#(add(X1, X2))add#(mark(X1), mark(X2))
mark#(p(X))mark#(X)active#(zero(s(X)))mark#(false)
if#(X1, X2, mark(X3))if#(X1, X2, X3)add#(active(X1), X2)add#(X1, X2)
if#(mark(X1), X2, X3)if#(X1, X2, X3)mark#(if(X1, X2, X3))mark#(X1)
active#(fact(X))fact#(p(X))mark#(false)active#(false)
mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(if(false, X, Y))mark#(Y)
mark#(zero(X))zero#(mark(X))if#(X1, active(X2), X3)if#(X1, X2, X3)
mark#(prod(X1, X2))mark#(X2)p#(mark(X))p#(X)
mark#(prod(X1, X2))mark#(X1)mark#(zero(X))active#(zero(mark(X)))
active#(add(s(X), Y))s#(add(X, Y))mark#(fact(X))active#(fact(mark(X)))
zero#(mark(X))zero#(X)add#(X1, active(X2))add#(X1, X2)
zero#(active(X))zero#(X)active#(prod(s(X), Y))add#(Y, prod(X, Y))
mark#(prod(X1, X2))prod#(mark(X1), mark(X2))mark#(if(X1, X2, X3))if#(mark(X1), X2, X3)
mark#(0)active#(0)mark#(s(X))active#(s(mark(X)))
if#(active(X1), X2, X3)if#(X1, X2, X3)s#(mark(X))s#(X)
mark#(p(X))p#(mark(X))active#(p(s(X)))mark#(X)
prod#(active(X1), X2)prod#(X1, X2)s#(active(X))s#(X)
fact#(mark(X))fact#(X)active#(fact(X))zero#(X)
active#(zero(0))mark#(true)p#(active(X))p#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


The following SCCs where found

mark#(false) → active#(false)mark#(zero(X)) → mark#(X)
mark#(if(X1, X2, X3)) → active#(if(mark(X1), X2, X3))active#(if(false, X, Y)) → mark#(Y)
active#(prod(0, X)) → mark#(0)active#(add(s(X), Y)) → mark#(s(add(X, Y)))
mark#(prod(X1, X2)) → mark#(X2)mark#(fact(X)) → mark#(X)
mark#(prod(X1, X2)) → mark#(X1)active#(if(true, X, Y)) → mark#(X)
mark#(zero(X)) → active#(zero(mark(X)))mark#(fact(X)) → active#(fact(mark(X)))
mark#(add(X1, X2)) → mark#(X2)mark#(prod(X1, X2)) → active#(prod(mark(X1), mark(X2)))
mark#(s(X)) → mark#(X)mark#(add(X1, X2)) → active#(add(mark(X1), mark(X2)))
mark#(add(X1, X2)) → mark#(X1)mark#(0) → active#(0)
mark#(s(X)) → active#(s(mark(X)))active#(prod(s(X), Y)) → mark#(add(Y, prod(X, Y)))
mark#(true) → active#(true)active#(fact(X)) → mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X)) → mark#(X)mark#(p(X)) → active#(p(mark(X)))
mark#(p(X)) → mark#(X)active#(zero(s(X))) → mark#(false)
active#(p(s(X))) → mark#(X)mark#(if(X1, X2, X3)) → mark#(X1)
active#(zero(0)) → mark#(true)

p#(mark(X)) → p#(X)p#(active(X)) → p#(X)

prod#(X1, mark(X2)) → prod#(X1, X2)prod#(mark(X1), X2) → prod#(X1, X2)
prod#(active(X1), X2) → prod#(X1, X2)prod#(X1, active(X2)) → prod#(X1, X2)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

if#(X1, mark(X2), X3) → if#(X1, X2, X3)if#(X1, X2, mark(X3)) → if#(X1, X2, X3)
if#(mark(X1), X2, X3) → if#(X1, X2, X3)if#(X1, active(X2), X3) → if#(X1, X2, X3)
if#(X1, X2, active(X3)) → if#(X1, X2, X3)if#(active(X1), X2, X3) → if#(X1, X2, X3)

add#(active(X1), X2) → add#(X1, X2)add#(X1, mark(X2)) → add#(X1, X2)
add#(X1, active(X2)) → add#(X1, X2)add#(mark(X1), X2) → add#(X1, X2)

zero#(mark(X)) → zero#(X)zero#(active(X)) → zero#(X)

fact#(active(X)) → fact#(X)fact#(mark(X)) → fact#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(active(X1), X2)add#(X1, X2)add#(X1, mark(X2))add#(X1, X2)
add#(X1, active(X2))add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(active(X1), X2)add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)add#(X1, active(X2))add#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


Function Precedence

mark = active < true = zero = add = 0 = fact = s = if = p = false = add# = prod

Argument Filtering

true: all arguments are removed from true
mark: collapses to 1
zero: all arguments are removed from zero
add: all arguments are removed from add
0: all arguments are removed from 0
fact: collapses to 1
s: all arguments are removed from s
if: 2 3
p: 1
false: all arguments are removed from false
active: 1
add#: 1 2
prod: 1 2

Status

true: multiset
zero: multiset
add: multiset
0: multiset
s: multiset
if: lexicographic with permutation 2 → 2 3 → 1
p: lexicographic with permutation 1 → 1
false: multiset
active: multiset
add#: lexicographic with permutation 1 → 1 2 → 2
prod: lexicographic with permutation 1 → 2 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, active(X2)) → add#(X1, X2)

Problem 14: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Function Precedence

true = mark = zero = add = 0 = fact = s = if = p = false = active = add# = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
zero: all arguments are removed from zero
add: all arguments are removed from add
0: all arguments are removed from 0
fact: collapses to 1
s: all arguments are removed from s
if: collapses to 2
p: collapses to 1
false: all arguments are removed from false
active: collapses to 1
add#: 2
prod: collapses to 1

Status

true: multiset
mark: multiset
zero: multiset
add: multiset
0: multiset
s: multiset
false: multiset
add#: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, mark(X2)) → add#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fact#(active(X))fact#(X)fact#(mark(X))fact#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fact#(active(X))fact#(X)fact#(mark(X))fact#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, X2, mark(X3))if#(X1, X2, X3)
if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(X1, active(X2), X3)if#(X1, X2, X3)
if#(X1, X2, active(X3))if#(X1, X2, X3)if#(active(X1), X2, X3)if#(X1, X2, X3)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(active(X1), X2, X3)if#(X1, X2, X3)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, X2, mark(X3))if#(X1, X2, X3)
if#(X1, active(X2), X3)if#(X1, X2, X3)if#(X1, X2, active(X3))if#(X1, X2, X3)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


Function Precedence

true = mark = zero = add = 0 = fact = s = if = p = if# = false = active = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
zero: all arguments are removed from zero
add: 1 2
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: 1 2 3
p: 1
if#: 3
false: all arguments are removed from false
active: 1
prod: all arguments are removed from prod

Status

true: multiset
mark: multiset
zero: multiset
add: lexicographic with permutation 1 → 2 2 → 1
0: multiset
fact: multiset
s: multiset
if: lexicographic with permutation 1 → 2 2 → 1 3 → 3
p: lexicographic with permutation 1 → 1
if#: lexicographic with permutation 3 → 1
false: multiset
active: multiset
prod: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

if#(X1, X2, mark(X3)) → if#(X1, X2, X3)if#(X1, X2, active(X3)) → if#(X1, X2, X3)

Problem 15: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)if#(X1, active(X2), X3)if#(X1, X2, X3)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Function Precedence

mark = active < true = zero = add = 0 = fact = s = if = p = if# = false = prod

Argument Filtering

true: all arguments are removed from true
mark: collapses to 1
zero: collapses to 1
add: all arguments are removed from add
0: all arguments are removed from 0
fact: 1
s: all arguments are removed from s
if: 1 3
p: all arguments are removed from p
if#: 1 2 3
false: all arguments are removed from false
active: 1
prod: 1 2

Status

true: multiset
add: multiset
0: multiset
fact: lexicographic with permutation 1 → 1
s: multiset
if: lexicographic with permutation 1 → 2 3 → 1
p: multiset
if#: lexicographic with permutation 1 → 2 2 → 3 3 → 1
false: multiset
active: multiset
prod: lexicographic with permutation 1 → 1 2 → 2

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

if#(X1, active(X2), X3) → if#(X1, X2, X3)

Problem 18: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

if#(X1, mark(X2), X3)if#(X1, X2, X3)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


Function Precedence

true = mark = zero = add = 0 = fact = s = if = p = if# = false = active = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
zero: all arguments are removed from zero
add: all arguments are removed from add
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: collapses to 2
p: all arguments are removed from p
if#: 2
false: all arguments are removed from false
active: all arguments are removed from active
prod: 1 2

Status

true: multiset
mark: multiset
zero: multiset
add: multiset
0: multiset
fact: multiset
s: multiset
p: multiset
if#: multiset
false: multiset
active: multiset
prod: lexicographic with permutation 1 → 1 2 → 2

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

if#(X1, mark(X2), X3) → if#(X1, X2, X3)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

prod#(X1, mark(X2))prod#(X1, X2)prod#(mark(X1), X2)prod#(X1, X2)
prod#(active(X1), X2)prod#(X1, X2)prod#(X1, active(X2))prod#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

prod#(mark(X1), X2)prod#(X1, X2)prod#(active(X1), X2)prod#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

prod#(X1, mark(X2))prod#(X1, X2)prod#(X1, active(X2))prod#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


Function Precedence

active < mark < true = zero = add = prod# = 0 = fact = s = if = p = false = prod

Argument Filtering

true: all arguments are removed from true
mark: collapses to 1
zero: all arguments are removed from zero
add: collapses to 2
prod#: collapses to 2
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: collapses to 1
if: all arguments are removed from if
p: 1
false: all arguments are removed from false
active: 1
prod: 2

Status

true: multiset
zero: multiset
0: multiset
fact: multiset
if: multiset
p: lexicographic with permutation 1 → 1
false: multiset
active: multiset
prod: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

prod#(X1, active(X2)) → prod#(X1, X2)

Problem 16: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

prod#(X1, mark(X2))prod#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Function Precedence

prod# < mark < true = zero = add = 0 = fact = s = if = p = false = active = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
zero: all arguments are removed from zero
add: 1 2
prod#: collapses to 2
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: all arguments are removed from if
p: collapses to 1
false: all arguments are removed from false
active: 1
prod: all arguments are removed from prod

Status

true: multiset
mark: multiset
zero: multiset
add: lexicographic with permutation 1 → 1 2 → 2
0: multiset
fact: multiset
s: multiset
if: multiset
false: multiset
active: lexicographic with permutation 1 → 1
prod: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

prod#(X1, mark(X2)) → prod#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

p#(mark(X))p#(X)p#(active(X))p#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

p#(mark(X))p#(X)p#(active(X))p#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

zero#(mark(X))zero#(X)zero#(active(X))zero#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

zero#(mark(X))zero#(X)zero#(active(X))zero#(X)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 9: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(false)active#(false)mark#(zero(X))mark#(X)
mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))active#(if(false, X, Y))mark#(Y)
active#(prod(0, X))mark#(0)active#(add(s(X), Y))mark#(s(add(X, Y)))
mark#(prod(X1, X2))mark#(X2)mark#(fact(X))mark#(X)
mark#(prod(X1, X2))mark#(X1)active#(if(true, X, Y))mark#(X)
mark#(zero(X))active#(zero(mark(X)))mark#(fact(X))active#(fact(mark(X)))
mark#(add(X1, X2))mark#(X2)mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))
mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))mark#(s(X))mark#(X)
mark#(add(X1, X2))mark#(X1)mark#(0)active#(0)
mark#(s(X))active#(s(mark(X)))mark#(true)active#(true)
active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X))mark#(X)mark#(p(X))active#(p(mark(X)))
mark#(p(X))mark#(X)active#(zero(s(X)))mark#(false)
active#(p(s(X)))mark#(X)mark#(if(X1, X2, X3))mark#(X1)
active#(zero(0))mark#(true)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


Function Precedence

active# < mark = add = zero = mark# = fact = if = p = active = prod < true = 0 = s = false

Argument Filtering

true: all arguments are removed from true
mark: all arguments are removed from mark
add: all arguments are removed from add
zero: all arguments are removed from zero
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: all arguments are removed from if
p: all arguments are removed from p
false: all arguments are removed from false
active: all arguments are removed from active
active#: collapses to 1
prod: all arguments are removed from prod

Status

true: multiset
mark: multiset
add: multiset
zero: multiset
mark#: multiset
0: multiset
fact: multiset
s: multiset
if: multiset
p: multiset
false: multiset
active: multiset
prod: multiset

Usable Rules

active(prod(0, X)) → mark(0)active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
zero(mark(X)) → zero(X)prod(active(X1), X2) → prod(X1, X2)
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))mark(s(X)) → active(s(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))if(active(X1), X2, X3) → if(X1, X2, X3)
add(X1, mark(X2)) → add(X1, X2)mark(fact(X)) → active(fact(mark(X)))
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))prod(X1, active(X2)) → prod(X1, X2)
mark(true) → active(true)fact(active(X)) → fact(X)
mark(p(X)) → active(p(mark(X)))active(p(s(X))) → mark(X)
if(X1, X2, active(X3)) → if(X1, X2, X3)add(X1, active(X2)) → add(X1, X2)
if(X1, X2, mark(X3)) → if(X1, X2, X3)prod(X1, mark(X2)) → prod(X1, X2)
add(mark(X1), X2) → add(X1, X2)mark(0) → active(0)
s(active(X)) → s(X)fact(mark(X)) → fact(X)
active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))if(X1, active(X2), X3) → if(X1, X2, X3)
if(mark(X1), X2, X3) → if(X1, X2, X3)add(active(X1), X2) → add(X1, X2)
prod(mark(X1), X2) → prod(X1, X2)active(add(s(X), Y)) → mark(s(add(X, Y)))
active(if(false, X, Y)) → mark(Y)zero(active(X)) → zero(X)
if(X1, mark(X2), X3) → if(X1, X2, X3)p(mark(X)) → p(X)
mark(false) → active(false)active(zero(s(X))) → mark(false)
active(add(0, X)) → mark(X)mark(zero(X)) → active(zero(mark(X)))
s(mark(X)) → s(X)active(if(true, X, Y)) → mark(X)
p(active(X)) → p(X)active(zero(0)) → mark(true)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(0) → active#(0)mark#(false) → active#(false)
mark#(s(X)) → active#(s(mark(X)))

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))mark#(zero(X))mark#(X)
active#(if(false, X, Y))mark#(Y)active#(prod(0, X))mark#(0)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(prod(X1, X2))mark#(X2)
mark#(fact(X))mark#(X)active#(if(true, X, Y))mark#(X)
mark#(prod(X1, X2))mark#(X1)mark#(zero(X))active#(zero(mark(X)))
mark#(fact(X))active#(fact(mark(X)))mark#(add(X1, X2))mark#(X2)
mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
mark#(true)active#(true)active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))
active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))active#(add(0, X))mark#(X)
mark#(p(X))active#(p(mark(X)))mark#(p(X))mark#(X)
active#(zero(s(X)))mark#(false)active#(p(s(X)))mark#(X)
mark#(if(X1, X2, X3))mark#(X1)active#(zero(0))mark#(true)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


Function Precedence

0 = s = false < mark = active < true = add = zero = mark# = fact = if = p = active# = prod

Argument Filtering

true: all arguments are removed from true
mark: all arguments are removed from mark
add: all arguments are removed from add
zero: all arguments are removed from zero
mark#: all arguments are removed from mark#
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: all arguments are removed from if
p: all arguments are removed from p
false: all arguments are removed from false
active: all arguments are removed from active
active#: collapses to 1
prod: all arguments are removed from prod

Status

true: multiset
mark: multiset
add: multiset
zero: multiset
mark#: multiset
0: multiset
fact: multiset
s: multiset
if: multiset
p: multiset
false: multiset
active: multiset
prod: multiset

Usable Rules

active(prod(0, X)) → mark(0)active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
zero(mark(X)) → zero(X)prod(active(X1), X2) → prod(X1, X2)
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))mark(s(X)) → active(s(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))if(active(X1), X2, X3) → if(X1, X2, X3)
add(X1, mark(X2)) → add(X1, X2)mark(fact(X)) → active(fact(mark(X)))
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))prod(X1, active(X2)) → prod(X1, X2)
mark(true) → active(true)fact(active(X)) → fact(X)
mark(p(X)) → active(p(mark(X)))active(p(s(X))) → mark(X)
if(X1, X2, active(X3)) → if(X1, X2, X3)add(X1, active(X2)) → add(X1, X2)
if(X1, X2, mark(X3)) → if(X1, X2, X3)prod(X1, mark(X2)) → prod(X1, X2)
add(mark(X1), X2) → add(X1, X2)mark(0) → active(0)
s(active(X)) → s(X)fact(mark(X)) → fact(X)
active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))if(X1, active(X2), X3) → if(X1, X2, X3)
if(mark(X1), X2, X3) → if(X1, X2, X3)add(active(X1), X2) → add(X1, X2)
prod(mark(X1), X2) → prod(X1, X2)active(add(s(X), Y)) → mark(s(add(X, Y)))
active(if(false, X, Y)) → mark(Y)zero(active(X)) → zero(X)
if(X1, mark(X2), X3) → if(X1, X2, X3)p(mark(X)) → p(X)
mark(false) → active(false)active(zero(s(X))) → mark(false)
active(add(0, X)) → mark(X)mark(zero(X)) → active(zero(mark(X)))
s(mark(X)) → s(X)active(if(true, X, Y)) → mark(X)
p(active(X)) → p(X)active(zero(0)) → mark(true)

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

mark#(true) → active#(true)

Problem 17: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

mark#(zero(X))mark#(X)mark#(if(X1, X2, X3))active#(if(mark(X1), X2, X3))
active#(if(false, X, Y))mark#(Y)active#(prod(0, X))mark#(0)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(prod(X1, X2))mark#(X2)
mark#(fact(X))mark#(X)mark#(prod(X1, X2))mark#(X1)
active#(if(true, X, Y))mark#(X)mark#(zero(X))active#(zero(mark(X)))
mark#(fact(X))active#(fact(mark(X)))mark#(add(X1, X2))mark#(X2)
mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))
mark#(s(X))mark#(X)mark#(add(X1, X2))mark#(X1)
active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X))mark#(X)mark#(p(X))active#(p(mark(X)))
mark#(p(X))mark#(X)active#(zero(s(X)))mark#(false)
active#(p(s(X)))mark#(X)mark#(if(X1, X2, X3))mark#(X1)
active#(zero(0))mark#(true)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: 0, fact, s, if, p, active, true, false, mark, zero, add, prod

Strategy


The right-hand side of the rule mark#(if(X1, X2, X3)) → active#(if(mark(X1), X2, X3)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
active#(if(active(s(mark(_x31))), X2, X3)) 
active#(if(active(0), X2, X3)) 
active#(if(mark(X1), _x22, _x23)) 
active#(if(active(zero(mark(_x31))), X2, X3)) 
active#(if(active(p(mark(_x31))), X2, X3)) 
active#(if(active(add(mark(_x31), mark(_x32))), X2, X3)) 
active#(if(active(if(mark(_x31), _x32, _x33)), X2, X3)) 
active#(if(active(prod(mark(_x31), mark(_x32))), X2, X3)) 
active#(if(_x21, _x22, _x23)) 
active#(if(active(true), X2, X3)) 
active#(if(active(false), X2, X3)) 
active#(if(active(fact(mark(_x31))), X2, X3)) 
Thus, the rule mark#(if(X1, X2, X3)) → active#(if(mark(X1), X2, X3)) is replaced by the following rules:
mark#(if(p(_x31), X2, X3)) → active#(if(active(p(mark(_x31))), X2, X3))mark#(if(0, X2, X3)) → active#(if(active(0), X2, X3))
mark#(if(if(_x31, _x32, _x33), X2, X3)) → active#(if(active(if(mark(_x31), _x32, _x33)), X2, X3))mark#(if(zero(_x31), X2, X3)) → active#(if(active(zero(mark(_x31))), X2, X3))
mark#(if(fact(_x31), X2, X3)) → active#(if(active(fact(mark(_x31))), X2, X3))mark#(if(X1, _x22, mark(_x23))) → active#(if(mark(X1), _x22, _x23))
mark#(if(s(_x31), X2, X3)) → active#(if(active(s(mark(_x31))), X2, X3))mark#(if(prod(_x31, _x32), X2, X3)) → active#(if(active(prod(mark(_x31), mark(_x32))), X2, X3))
mark#(if(X1, mark(_x22), _x23)) → active#(if(mark(X1), _x22, _x23))mark#(if(true, X2, X3)) → active#(if(active(true), X2, X3))
mark#(if(add(_x31, _x32), X2, X3)) → active#(if(active(add(mark(_x31), mark(_x32))), X2, X3))mark#(if(_x21, _x22, _x23)) → active#(if(_x21, _x22, _x23))
mark#(if(X1, active(_x22), _x23)) → active#(if(mark(X1), _x22, _x23))mark#(if(false, X2, X3)) → active#(if(active(false), X2, X3))
mark#(if(X1, _x22, active(_x23))) → active#(if(mark(X1), _x22, _x23))

Problem 19: ForwardNarrowing



Dependency Pair Problem

Dependency Pairs

mark#(if(p(_x31), X2, X3))active#(if(active(p(mark(_x31))), X2, X3))mark#(zero(X))mark#(X)
active#(if(false, X, Y))mark#(Y)mark#(if(0, X2, X3))active#(if(active(0), X2, X3))
mark#(if(if(_x31, _x32, _x33), X2, X3))active#(if(active(if(mark(_x31), _x32, _x33)), X2, X3))active#(prod(0, X))mark#(0)
active#(add(s(X), Y))mark#(s(add(X, Y)))mark#(prod(X1, X2))mark#(X2)
mark#(fact(X))mark#(X)mark#(if(X1, _x22, mark(_x23)))active#(if(mark(X1), _x22, _x23))
active#(if(true, X, Y))mark#(X)mark#(prod(X1, X2))mark#(X1)
mark#(zero(X))active#(zero(mark(X)))mark#(if(s(_x31), X2, X3))active#(if(active(s(mark(_x31))), X2, X3))
mark#(fact(X))active#(fact(mark(X)))mark#(if(X1, mark(_x22), _x23))active#(if(mark(X1), _x22, _x23))
mark#(add(X1, X2))mark#(X2)mark#(prod(X1, X2))active#(prod(mark(X1), mark(X2)))
mark#(add(X1, X2))active#(add(mark(X1), mark(X2)))mark#(s(X))mark#(X)
mark#(add(X1, X2))mark#(X1)mark#(if(X1, active(_x22), _x23))active#(if(mark(X1), _x22, _x23))
active#(prod(s(X), Y))mark#(add(Y, prod(X, Y)))active#(fact(X))mark#(if(zero(X), s(0), prod(X, fact(p(X)))))
active#(add(0, X))mark#(X)mark#(if(zero(_x31), X2, X3))active#(if(active(zero(mark(_x31))), X2, X3))
mark#(p(X))active#(p(mark(X)))mark#(if(fact(_x31), X2, X3))active#(if(active(fact(mark(_x31))), X2, X3))
mark#(p(X))mark#(X)mark#(if(prod(_x31, _x32), X2, X3))active#(if(active(prod(mark(_x31), mark(_x32))), X2, X3))
active#(zero(s(X)))mark#(false)active#(p(s(X)))mark#(X)
mark#(if(true, X2, X3))active#(if(active(true), X2, X3))mark#(if(X1, X2, X3))mark#(X1)
mark#(if(add(_x31, _x32), X2, X3))active#(if(active(add(mark(_x31), mark(_x32))), X2, X3))mark#(if(_x21, _x22, _x23))active#(if(_x21, _x22, _x23))
active#(zero(0))mark#(true)mark#(if(false, X2, X3))active#(if(active(false), X2, X3))
mark#(if(X1, _x22, active(_x23)))active#(if(mark(X1), _x22, _x23))

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
mark(fact(X))active(fact(mark(X)))mark(if(X1, X2, X3))active(if(mark(X1), X2, X3))
mark(zero(X))active(zero(mark(X)))mark(s(X))active(s(mark(X)))
mark(0)active(0)mark(prod(X1, X2))active(prod(mark(X1), mark(X2)))
mark(p(X))active(p(mark(X)))mark(add(X1, X2))active(add(mark(X1), mark(X2)))
mark(true)active(true)mark(false)active(false)
fact(mark(X))fact(X)fact(active(X))fact(X)
if(mark(X1), X2, X3)if(X1, X2, X3)if(X1, mark(X2), X3)if(X1, X2, X3)
if(X1, X2, mark(X3))if(X1, X2, X3)if(active(X1), X2, X3)if(X1, X2, X3)
if(X1, active(X2), X3)if(X1, X2, X3)if(X1, X2, active(X3))if(X1, X2, X3)
zero(mark(X))zero(X)zero(active(X))zero(X)
s(mark(X))s(X)s(active(X))s(X)
prod(mark(X1), X2)prod(X1, X2)prod(X1, mark(X2))prod(X1, X2)
prod(active(X1), X2)prod(X1, X2)prod(X1, active(X2))prod(X1, X2)
p(mark(X))p(X)p(active(X))p(X)
add(mark(X1), X2)add(X1, X2)add(X1, mark(X2))add(X1, X2)
add(active(X1), X2)add(X1, X2)add(X1, active(X2))add(X1, X2)

Original Signature

Termination of terms over the following signature is verified: fact, 0, s, if, p, false, true, active, mark, add, zero, prod

Strategy


The right-hand side of the rule mark#(if(p(_x31), X2, X3)) → active#(if(active(p(mark(_x31))), X2, X3)) is narrowed to the following relevant and irrelevant terms (a narrowing is irrelevant if by dropping it the correctness (and completeness) of the processor is not influenced).
Relevant TermsIrrelevant Terms
active#(if(active(p(active(p(mark(_x61))))), X2, X3)) 
active#(if(active(p(active(0))), X2, X3)) 
active#(if(active(p(mark(_x31))), _x22, _x23)) 
active#(if(active(p(active(s(mark(_x61))))), X2, X3)) 
active#(if(active(p(active(fact(mark(_x61))))), X2, X3)) 
active#(if(active(p(_x51)), X2, X3)) 
active#(if(active(p(active(false))), X2, X3)) 
active#(if(active(p(active(prod(mark(_x61), mark(_x62))))), X2, X3)) 
active#(if(active(p(active(zero(mark(_x61))))), X2, X3)) 
active#(if(active(p(active(add(mark(_x61), mark(_x62))))), X2, X3)) 
active#(if(active(p(active(true))), X2, X3)) 
active#(if(active(p(active(if(mark(_x61), _x62, _x63)))), X2, X3)) 
active#(if(p(mark(_x31)), _x22, _x23)) 
Thus, the rule mark#(if(p(_x31), X2, X3)) → active#(if(active(p(mark(_x31))), X2, X3)) is replaced by the following rules:
mark#(if(p(false), X2, X3)) → active#(if(active(p(active(false))), X2, X3))mark#(if(p(s(_x61)), X2, X3)) → active#(if(active(p(active(s(mark(_x61))))), X2, X3))
mark#(if(p(if(_x61, _x62, _x63)), X2, X3)) → active#(if(active(p(active(if(mark(_x61), _x62, _x63)))), X2, X3))mark#(if(p(_x31), active(_x22), _x23)) → active#(if(active(p(mark(_x31))), _x22, _x23))
mark#(if(p(add(_x61, _x62)), X2, X3)) → active#(if(active(p(active(add(mark(_x61), mark(_x62))))), X2, X3))mark#(if(p(_x31), _x22, mark(_x23))) → active#(if(active(p(mark(_x31))), _x22, _x23))
mark#(if(p(_x31), _x22, active(_x23))) → active#(if(active(p(mark(_x31))), _x22, _x23))mark#(if(p(zero(_x61)), X2, X3)) → active#(if(active(p(active(zero(mark(_x61))))), X2, X3))
mark#(if(p(_x31), mark(_x22), _x23)) → active#(if(active(p(mark(_x31))), _x22, _x23))mark#(if(p(prod(_x61, _x62)), X2, X3)) → active#(if(active(p(active(prod(mark(_x61), mark(_x62))))), X2, X3))
mark#(if(p(_x51), X2, X3)) → active#(if(active(p(_x51)), X2, X3))mark#(if(p(true), X2, X3)) → active#(if(active(p(active(true))), X2, X3))
mark#(if(p(0), X2, X3)) → active#(if(active(p(active(0))), X2, X3))mark#(if(p(_x31), _x22, _x23)) → active#(if(p(mark(_x31)), _x22, _x23))
mark#(if(p(p(_x61)), X2, X3)) → active#(if(active(p(active(p(mark(_x61))))), X2, X3))mark#(if(p(fact(_x61)), X2, X3)) → active#(if(active(p(active(fact(mark(_x61))))), X2, X3))