TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (175ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (0ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (28ms), PolynomialLinearRange4iUR (681ms), DependencyGraph (27ms), PolynomialLinearRange8NegiUR (4321ms), DependencyGraph (21ms), ReductionPairSAT (516ms), DependencyGraph (21ms), SizeChangePrinciple (timeout)].

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

activate#(n__fact(X))activate#(X)activate#(n__prod(X1, X2))activate#(X2)
fact#(X)if#(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))if#(true, X, Y)activate#(X)
if#(false, X, Y)activate#(Y)activate#(n__s(X))activate#(X)
activate#(n__fact(X))fact#(activate(X))activate#(n__p(X))activate#(X)
activate#(n__prod(X1, X2))activate#(X1)

Rewrite Rules

fact(X)if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))add(0, X)X
add(s(X), Y)s(add(X, Y))prod(0, X)0
prod(s(X), Y)add(Y, prod(X, Y))if(true, X, Y)activate(X)
if(false, X, Y)activate(Y)zero(0)true
zero(s(X))falsep(s(X))X
s(X)n__s(X)0n__0
prod(X1, X2)n__prod(X1, X2)fact(X)n__fact(X)
p(X)n__p(X)activate(n__s(X))s(activate(X))
activate(n__0)0activate(n__prod(X1, X2))prod(activate(X1), activate(X2))
activate(n__fact(X))fact(activate(X))activate(n__p(X))p(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: true, zero, add, n__s, activate, n__prod, n__0, fact, 0, s, if, p, n__p, false, n__fact, prod


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__fact(X))activate#(X)activate#(n__prod(X1, X2))prod#(activate(X1), activate(X2))
activate#(n__prod(X1, X2))activate#(X2)fact#(X)if#(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
activate#(n__s(X))activate#(X)activate#(n__fact(X))fact#(activate(X))
add#(s(X), Y)s#(add(X, Y))activate#(n__p(X))p#(activate(X))
add#(s(X), Y)add#(X, Y)prod#(0, X)0#
prod#(s(X), Y)prod#(X, Y)prod#(s(X), Y)add#(Y, prod(X, Y))
if#(false, X, Y)activate#(Y)if#(true, X, Y)activate#(X)
fact#(X)zero#(X)activate#(n__0)0#
activate#(n__p(X))activate#(X)activate#(n__s(X))s#(activate(X))
activate#(n__prod(X1, X2))activate#(X1)

Rewrite Rules

fact(X)if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))add(0, X)X
add(s(X), Y)s(add(X, Y))prod(0, X)0
prod(s(X), Y)add(Y, prod(X, Y))if(true, X, Y)activate(X)
if(false, X, Y)activate(Y)zero(0)true
zero(s(X))falsep(s(X))X
s(X)n__s(X)0n__0
prod(X1, X2)n__prod(X1, X2)fact(X)n__fact(X)
p(X)n__p(X)activate(n__s(X))s(activate(X))
activate(n__0)0activate(n__prod(X1, X2))prod(activate(X1), activate(X2))
activate(n__fact(X))fact(activate(X))activate(n__p(X))p(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: true, zero, add, n__s, activate, n__prod, n__0, fact, 0, s, if, p, n__p, false, n__fact, prod

Strategy


The following SCCs where found

add#(s(X), Y) → add#(X, Y)

prod#(s(X), Y) → prod#(X, Y)

activate#(n__fact(X)) → activate#(X)activate#(n__prod(X1, X2)) → activate#(X2)
fact#(X) → if#(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))activate#(n__s(X)) → activate#(X)
if#(false, X, Y) → activate#(Y)if#(true, X, Y) → activate#(X)
activate#(n__p(X)) → activate#(X)activate#(n__fact(X)) → fact#(activate(X))
activate#(n__prod(X1, X2)) → activate#(X1)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

prod#(s(X), Y)prod#(X, Y)

Rewrite Rules

fact(X)if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))add(0, X)X
add(s(X), Y)s(add(X, Y))prod(0, X)0
prod(s(X), Y)add(Y, prod(X, Y))if(true, X, Y)activate(X)
if(false, X, Y)activate(Y)zero(0)true
zero(s(X))falsep(s(X))X
s(X)n__s(X)0n__0
prod(X1, X2)n__prod(X1, X2)fact(X)n__fact(X)
p(X)n__p(X)activate(n__s(X))s(activate(X))
activate(n__0)0activate(n__prod(X1, X2))prod(activate(X1), activate(X2))
activate(n__fact(X))fact(activate(X))activate(n__p(X))p(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: true, zero, add, n__s, activate, n__prod, n__0, fact, 0, s, if, p, n__p, false, n__fact, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

prod#(s(X), Y)prod#(X, Y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(s(X), Y)add#(X, Y)

Rewrite Rules

fact(X)if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))add(0, X)X
add(s(X), Y)s(add(X, Y))prod(0, X)0
prod(s(X), Y)add(Y, prod(X, Y))if(true, X, Y)activate(X)
if(false, X, Y)activate(Y)zero(0)true
zero(s(X))falsep(s(X))X
s(X)n__s(X)0n__0
prod(X1, X2)n__prod(X1, X2)fact(X)n__fact(X)
p(X)n__p(X)activate(n__s(X))s(activate(X))
activate(n__0)0activate(n__prod(X1, X2))prod(activate(X1), activate(X2))
activate(n__fact(X))fact(activate(X))activate(n__p(X))p(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: true, zero, add, n__s, activate, n__prod, n__0, fact, 0, s, if, p, n__p, false, n__fact, prod

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(s(X), Y)add#(X, Y)