TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60003 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (3624ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (8ms), PolynomialLinearRange4iUR (3334ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (10001ms), DependencyGraph (5ms), ReductionPairSAT (5279ms), DependencyGraph (3ms), ReductionPairSAT (4886ms), DependencyGraph (25ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (3ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (118ms).
 | – Problem 8 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (77ms).
 | – Problem 9 was processed with processor SubtermCriterion (0ms).
 | – Problem 10 was processed with processor SubtermCriterion (0ms).
 | – Problem 11 was processed with processor SubtermCriterion (3ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, top, prod


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

active#(prod(s(X), Y))prod#(X, Y)top#(ok(X))top#(active(X))
zero#(ok(X))zero#(X)active#(zero(X))zero#(active(X))
active#(fact(X))if#(zero(X), s(0), prod(X, fact(p(X))))add#(X1, mark(X2))add#(X1, X2)
active#(fact(X))s#(0)proper#(p(X))proper#(X)
active#(if(X1, X2, X3))active#(X1)active#(add(X1, X2))add#(active(X1), X2)
active#(p(X))p#(active(X))prod#(mark(X1), X2)prod#(X1, X2)
active#(prod(X1, X2))prod#(active(X1), X2)proper#(p(X))p#(proper(X))
active#(prod(X1, X2))active#(X2)active#(prod(X1, X2))prod#(X1, active(X2))
top#(mark(X))proper#(X)active#(fact(X))p#(X)
proper#(add(X1, X2))proper#(X2)active#(fact(X))prod#(X, fact(p(X)))
proper#(fact(X))fact#(proper(X))active#(fact(X))fact#(active(X))
prod#(X1, mark(X2))prod#(X1, X2)top#(mark(X))top#(proper(X))
active#(p(X))active#(X)proper#(add(X1, X2))proper#(X1)
add#(mark(X1), X2)add#(X1, X2)proper#(zero(X))proper#(X)
proper#(s(X))proper#(X)active#(add(s(X), Y))add#(X, Y)
active#(add(X1, X2))active#(X2)active#(zero(X))active#(X)
if#(mark(X1), X2, X3)if#(X1, X2, X3)fact#(ok(X))fact#(X)
active#(fact(X))fact#(p(X))proper#(prod(X1, X2))proper#(X2)
proper#(zero(X))zero#(proper(X))proper#(add(X1, X2))add#(proper(X1), proper(X2))
proper#(prod(X1, X2))prod#(proper(X1), proper(X2))active#(add(X1, X2))add#(X1, active(X2))
add#(ok(X1), ok(X2))add#(X1, X2)p#(mark(X))p#(X)
top#(ok(X))active#(X)prod#(ok(X1), ok(X2))prod#(X1, X2)
active#(add(s(X), Y))s#(add(X, Y))zero#(mark(X))zero#(X)
if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)active#(prod(X1, X2))active#(X1)
active#(prod(s(X), Y))add#(Y, prod(X, Y))active#(fact(X))active#(X)
active#(add(X1, X2))active#(X1)proper#(if(X1, X2, X3))proper#(X1)
proper#(if(X1, X2, X3))proper#(X2)proper#(fact(X))proper#(X)
active#(s(X))s#(active(X))s#(ok(X))s#(X)
s#(mark(X))s#(X)active#(s(X))active#(X)
proper#(s(X))s#(proper(X))proper#(if(X1, X2, X3))proper#(X3)
active#(if(X1, X2, X3))if#(active(X1), X2, X3)p#(ok(X))p#(X)
fact#(mark(X))fact#(X)proper#(if(X1, X2, X3))if#(proper(X1), proper(X2), proper(X3))
proper#(prod(X1, X2))proper#(X1)active#(fact(X))zero#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


The following SCCs where found

p#(ok(X)) → p#(X)p#(mark(X)) → p#(X)

zero#(mark(X)) → zero#(X)zero#(ok(X)) → zero#(X)

prod#(X1, mark(X2)) → prod#(X1, X2)prod#(mark(X1), X2) → prod#(X1, X2)
prod#(ok(X1), ok(X2)) → prod#(X1, X2)

add#(X1, mark(X2)) → add#(X1, X2)add#(mark(X1), X2) → add#(X1, X2)
add#(ok(X1), ok(X2)) → add#(X1, X2)

if#(mark(X1), X2, X3) → if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3)) → if#(X1, X2, X3)

proper#(prod(X1, X2)) → proper#(X2)proper#(s(X)) → proper#(X)
proper#(if(X1, X2, X3)) → proper#(X1)proper#(if(X1, X2, X3)) → proper#(X2)
proper#(if(X1, X2, X3)) → proper#(X3)proper#(add(X1, X2)) → proper#(X1)
proper#(fact(X)) → proper#(X)proper#(zero(X)) → proper#(X)
proper#(p(X)) → proper#(X)proper#(prod(X1, X2)) → proper#(X1)
proper#(add(X1, X2)) → proper#(X2)

active#(fact(X)) → active#(X)active#(add(X1, X2)) → active#(X1)
active#(if(X1, X2, X3)) → active#(X1)active#(add(X1, X2)) → active#(X2)
active#(s(X)) → active#(X)active#(p(X)) → active#(X)
active#(prod(X1, X2)) → active#(X2)active#(zero(X)) → active#(X)
active#(prod(X1, X2)) → active#(X1)

fact#(ok(X)) → fact#(X)fact#(mark(X)) → fact#(X)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

if#(mark(X1), X2, X3)if#(X1, X2, X3)if#(ok(X1), ok(X2), ok(X3))if#(X1, X2, X3)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(fact(X))active#(X)active#(add(X1, X2))active#(X1)
active#(if(X1, X2, X3))active#(X1)active#(add(X1, X2))active#(X2)
active#(s(X))active#(X)active#(p(X))active#(X)
active#(prod(X1, X2))active#(X2)active#(zero(X))active#(X)
active#(prod(X1, X2))active#(X1)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(fact(X))active#(X)active#(add(X1, X2))active#(X1)
active#(if(X1, X2, X3))active#(X1)active#(add(X1, X2))active#(X2)
active#(p(X))active#(X)active#(s(X))active#(X)
active#(zero(X))active#(X)active#(prod(X1, X2))active#(X2)
active#(prod(X1, X2))active#(X1)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

zero#(mark(X))zero#(X)zero#(ok(X))zero#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

zero#(ok(X))zero#(X)zero#(mark(X))zero#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(prod(X1, X2))proper#(X2)proper#(s(X))proper#(X)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(add(X1, X2))proper#(X1)
proper#(fact(X))proper#(X)proper#(zero(X))proper#(X)
proper#(p(X))proper#(X)proper#(prod(X1, X2))proper#(X1)
proper#(add(X1, X2))proper#(X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(prod(X1, X2))proper#(X2)
proper#(if(X1, X2, X3))proper#(X1)proper#(if(X1, X2, X3))proper#(X2)
proper#(if(X1, X2, X3))proper#(X3)proper#(add(X1, X2))proper#(X1)
proper#(fact(X))proper#(X)proper#(zero(X))proper#(X)
proper#(p(X))proper#(X)proper#(prod(X1, X2))proper#(X1)
proper#(add(X1, X2))proper#(X2)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)
add#(ok(X1), ok(X2))add#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(mark(X1), X2)add#(X1, X2)add#(ok(X1), ok(X2))add#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, top, prod

Strategy


Function Precedence

true = mark = add = zero = 0 = fact = s = if = p = false = active = ok = proper = add# = top = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
add: all arguments are removed from add
zero: all arguments are removed from zero
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: all arguments are removed from if
p: all arguments are removed from p
false: all arguments are removed from false
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: all arguments are removed from proper
add#: collapses to 2
top: all arguments are removed from top
prod: 1

Status

true: multiset
mark: multiset
add: multiset
zero: multiset
0: multiset
fact: multiset
s: multiset
if: multiset
p: multiset
false: multiset
active: multiset
ok: multiset
proper: multiset
top: multiset
prod: lexicographic with permutation 1 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, mark(X2)) → add#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

prod#(X1, mark(X2))prod#(X1, X2)prod#(mark(X1), X2)prod#(X1, X2)
prod#(ok(X1), ok(X2))prod#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

prod#(mark(X1), X2)prod#(X1, X2)prod#(ok(X1), ok(X2))prod#(X1, X2)

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

prod#(X1, mark(X2))prod#(X1, X2)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, top, prod

Strategy


Function Precedence

true = mark = add = zero = prod# = 0 = fact = s = if = p = false = active = ok = proper = top = prod

Argument Filtering

true: all arguments are removed from true
mark: 1
add: all arguments are removed from add
zero: all arguments are removed from zero
prod#: 2
0: all arguments are removed from 0
fact: all arguments are removed from fact
s: all arguments are removed from s
if: all arguments are removed from if
p: 1
false: all arguments are removed from false
active: 1
ok: all arguments are removed from ok
proper: collapses to 1
top: 1
prod: 2

Status

true: multiset
mark: multiset
add: multiset
zero: multiset
prod#: lexicographic with permutation 2 → 1
0: multiset
fact: multiset
s: multiset
if: multiset
p: lexicographic with permutation 1 → 1
false: multiset
active: lexicographic with permutation 1 → 1
ok: multiset
top: lexicographic with permutation 1 → 1
prod: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

prod#(X1, mark(X2)) → prod#(X1, X2)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fact#(ok(X))fact#(X)fact#(mark(X))fact#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fact#(ok(X))fact#(X)fact#(mark(X))fact#(X)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

p#(ok(X))p#(X)p#(mark(X))p#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

p#(ok(X))p#(X)p#(mark(X))p#(X)

Problem 11: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(fact(X))mark(if(zero(X), s(0), prod(X, fact(p(X)))))active(add(0, X))mark(X)
active(add(s(X), Y))mark(s(add(X, Y)))active(prod(0, X))mark(0)
active(prod(s(X), Y))mark(add(Y, prod(X, Y)))active(if(true, X, Y))mark(X)
active(if(false, X, Y))mark(Y)active(zero(0))mark(true)
active(zero(s(X)))mark(false)active(p(s(X)))mark(X)
active(fact(X))fact(active(X))active(if(X1, X2, X3))if(active(X1), X2, X3)
active(zero(X))zero(active(X))active(s(X))s(active(X))
active(prod(X1, X2))prod(active(X1), X2)active(prod(X1, X2))prod(X1, active(X2))
active(p(X))p(active(X))active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fact(mark(X))mark(fact(X))
if(mark(X1), X2, X3)mark(if(X1, X2, X3))zero(mark(X))mark(zero(X))
s(mark(X))mark(s(X))prod(mark(X1), X2)mark(prod(X1, X2))
prod(X1, mark(X2))mark(prod(X1, X2))p(mark(X))mark(p(X))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fact(X))fact(proper(X))proper(if(X1, X2, X3))if(proper(X1), proper(X2), proper(X3))
proper(zero(X))zero(proper(X))proper(s(X))s(proper(X))
proper(0)ok(0)proper(prod(X1, X2))prod(proper(X1), proper(X2))
proper(p(X))p(proper(X))proper(add(X1, X2))add(proper(X1), proper(X2))
proper(true)ok(true)proper(false)ok(false)
fact(ok(X))ok(fact(X))if(ok(X1), ok(X2), ok(X3))ok(if(X1, X2, X3))
zero(ok(X))ok(zero(X))s(ok(X))ok(s(X))
prod(ok(X1), ok(X2))ok(prod(X1, X2))p(ok(X))ok(p(X))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: true, mark, zero, add, 0, fact, s, if, p, active, false, ok, proper, prod, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)