TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1091ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (2ms), DependencyGraph (190ms), PolynomialLinearRange4iUR (5000ms), DependencyGraph (151ms), PolynomialLinearRange8NegiUR (15000ms), DependencyGraph (142ms), ReductionPairSAT (5574ms), DependencyGraph (143ms), ReductionPairSAT (5612ms), DependencyGraph (172ms), ReductionPairSAT (5490ms), DependencyGraph (151ms), SizeChangePrinciple (timeout)].
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 9 was processed with processor ReductionPairSAT (46ms).
 |    |    | – Problem 10 was processed with processor ReductionPairSAT (31ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

mark#(hd(X))active#(hd(mark(X)))mark#(0)active#(0)
active#(adx(cons(X, Y)))mark#(incr(cons(X, adx(Y))))mark#(nats)active#(nats)
mark#(hd(X))mark#(X)active#(incr(cons(X, Y)))mark#(cons(s(X), incr(Y)))
active#(tl(cons(X, Y)))mark#(Y)mark#(incr(X))active#(incr(mark(X)))
mark#(incr(X))mark#(X)mark#(s(X))active#(s(X))
mark#(cons(X1, X2))active#(cons(X1, X2))mark#(tl(X))active#(tl(mark(X)))
mark#(tl(X))mark#(X)active#(hd(cons(X, Y)))mark#(X)
mark#(adx(X))mark#(X)active#(zeros)mark#(cons(0, zeros))
active#(nats)mark#(adx(zeros))mark#(zeros)active#(zeros)
mark#(adx(X))active#(adx(mark(X)))

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, tl, 0, s, zeros, active, adx, hd, mark, incr, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

hd#(active(X))hd#(X)mark#(hd(X))active#(hd(mark(X)))
mark#(tl(X))tl#(mark(X))incr#(active(X))incr#(X)
active#(adx(cons(X, Y)))cons#(X, adx(Y))active#(incr(cons(X, Y)))cons#(s(X), incr(Y))
mark#(hd(X))mark#(X)tl#(active(X))tl#(X)
active#(incr(cons(X, Y)))mark#(cons(s(X), incr(Y)))cons#(mark(X1), X2)cons#(X1, X2)
mark#(cons(X1, X2))cons#(X1, X2)mark#(tl(X))active#(tl(mark(X)))
active#(hd(cons(X, Y)))mark#(X)mark#(hd(X))hd#(mark(X))
incr#(mark(X))incr#(X)active#(nats)mark#(adx(zeros))
cons#(X1, mark(X2))cons#(X1, X2)mark#(incr(X))incr#(mark(X))
mark#(adx(X))adx#(mark(X))mark#(zeros)active#(zeros)
active#(adx(cons(X, Y)))adx#(Y)active#(adx(cons(X, Y)))mark#(incr(cons(X, adx(Y))))
active#(incr(cons(X, Y)))incr#(Y)mark#(0)active#(0)
adx#(active(X))adx#(X)active#(adx(cons(X, Y)))incr#(cons(X, adx(Y)))
mark#(nats)active#(nats)hd#(mark(X))hd#(X)
active#(tl(cons(X, Y)))mark#(Y)cons#(active(X1), X2)cons#(X1, X2)
mark#(incr(X))active#(incr(mark(X)))mark#(incr(X))mark#(X)
mark#(s(X))active#(s(X))mark#(cons(X1, X2))active#(cons(X1, X2))
active#(nats)adx#(zeros)mark#(s(X))s#(X)
s#(mark(X))s#(X)adx#(mark(X))adx#(X)
cons#(X1, active(X2))cons#(X1, X2)active#(incr(cons(X, Y)))s#(X)
mark#(tl(X))mark#(X)mark#(adx(X))mark#(X)
tl#(mark(X))tl#(X)active#(zeros)cons#(0, zeros)
active#(zeros)mark#(cons(0, zeros))s#(active(X))s#(X)
mark#(adx(X))active#(adx(mark(X)))

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


The following SCCs where found

adx#(mark(X)) → adx#(X)adx#(active(X)) → adx#(X)

hd#(active(X)) → hd#(X)hd#(mark(X)) → hd#(X)

tl#(active(X)) → tl#(X)tl#(mark(X)) → tl#(X)

cons#(X1, active(X2)) → cons#(X1, X2)cons#(mark(X1), X2) → cons#(X1, X2)
cons#(X1, mark(X2)) → cons#(X1, X2)cons#(active(X1), X2) → cons#(X1, X2)

s#(mark(X)) → s#(X)s#(active(X)) → s#(X)

incr#(active(X)) → incr#(X)incr#(mark(X)) → incr#(X)

active#(adx(cons(X, Y))) → mark#(incr(cons(X, adx(Y))))mark#(0) → active#(0)
mark#(hd(X)) → active#(hd(mark(X)))mark#(nats) → active#(nats)
mark#(hd(X)) → mark#(X)active#(incr(cons(X, Y))) → mark#(cons(s(X), incr(Y)))
active#(tl(cons(X, Y))) → mark#(Y)mark#(incr(X)) → active#(incr(mark(X)))
mark#(incr(X)) → mark#(X)mark#(s(X)) → active#(s(X))
mark#(cons(X1, X2)) → active#(cons(X1, X2))mark#(tl(X)) → active#(tl(mark(X)))
active#(hd(cons(X, Y))) → mark#(X)mark#(tl(X)) → mark#(X)
mark#(adx(X)) → mark#(X)active#(nats) → mark#(adx(zeros))
active#(zeros) → mark#(cons(0, zeros))mark#(zeros) → active#(zeros)
mark#(adx(X)) → active#(adx(mark(X)))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

adx#(mark(X))adx#(X)adx#(active(X))adx#(X)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

adx#(mark(X))adx#(X)adx#(active(X))adx#(X)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

tl#(active(X))tl#(X)tl#(mark(X))tl#(X)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

tl#(active(X))tl#(X)tl#(mark(X))tl#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

incr#(active(X))incr#(X)incr#(mark(X))incr#(X)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

incr#(active(X))incr#(X)incr#(mark(X))incr#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(active(X))s#(X)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(active(X))s#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(mark(X1), X2)cons#(X1, X2)
cons#(X1, mark(X2))cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(active(X1), X2)cons#(X1, X2)

Problem 9: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, active(X2))cons#(X1, X2)cons#(X1, mark(X2))cons#(X1, X2)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, tl, 0, s, zeros, active, adx, hd, mark, incr, cons

Strategy


Function Precedence

active = mark < cons# = nats = tl = 0 = s = zeros = adx = hd = incr = cons

Argument Filtering

cons#: collapses to 2
nats: all arguments are removed from nats
tl: 1
0: all arguments are removed from 0
s: all arguments are removed from s
zeros: all arguments are removed from zeros
active: 1
adx: all arguments are removed from adx
mark: collapses to 1
hd: all arguments are removed from hd
incr: all arguments are removed from incr
cons: 1 2

Status

nats: multiset
tl: lexicographic with permutation 1 → 1
0: multiset
s: multiset
zeros: multiset
active: multiset
adx: multiset
hd: multiset
incr: multiset
cons: lexicographic with permutation 1 → 1 2 → 2

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, active(X2)) → cons#(X1, X2)

Problem 10: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

cons#(X1, mark(X2))cons#(X1, X2)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Function Precedence

cons# = nats = tl = 0 = s = zeros = active = adx = mark = hd = incr = cons

Argument Filtering

cons#: collapses to 2
nats: all arguments are removed from nats
tl: all arguments are removed from tl
0: all arguments are removed from 0
s: all arguments are removed from s
zeros: all arguments are removed from zeros
active: all arguments are removed from active
adx: 1
mark: 1
hd: 1
incr: all arguments are removed from incr
cons: 2

Status

nats: multiset
tl: multiset
0: multiset
s: multiset
zeros: multiset
active: multiset
adx: lexicographic with permutation 1 → 1
mark: lexicographic with permutation 1 → 1
hd: lexicographic with permutation 1 → 1
incr: multiset
cons: lexicographic with permutation 2 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

cons#(X1, mark(X2)) → cons#(X1, X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

hd#(active(X))hd#(X)hd#(mark(X))hd#(X)

Rewrite Rules

active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(incr(cons(X, Y)))mark(cons(s(X), incr(Y)))active(adx(cons(X, Y)))mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y)))mark(X)active(tl(cons(X, Y)))mark(Y)
mark(nats)active(nats)mark(adx(X))active(adx(mark(X)))
mark(zeros)active(zeros)mark(cons(X1, X2))active(cons(X1, X2))
mark(0)active(0)mark(incr(X))active(incr(mark(X)))
mark(s(X))active(s(X))mark(hd(X))active(hd(mark(X)))
mark(tl(X))active(tl(mark(X)))adx(mark(X))adx(X)
adx(active(X))adx(X)cons(mark(X1), X2)cons(X1, X2)
cons(X1, mark(X2))cons(X1, X2)cons(active(X1), X2)cons(X1, X2)
cons(X1, active(X2))cons(X1, X2)incr(mark(X))incr(X)
incr(active(X))incr(X)s(mark(X))s(X)
s(active(X))s(X)hd(mark(X))hd(X)
hd(active(X))hd(X)tl(mark(X))tl(X)
tl(active(X))tl(X)

Original Signature

Termination of terms over the following signature is verified: nats, 0, tl, s, zeros, adx, active, mark, hd, incr, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

hd#(active(X))hd#(X)hd#(mark(X))hd#(X)