TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60164 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1354ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (4ms), DependencyGraph (3ms), PolynomialLinearRange4iUR (3661ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (timeout), DependencyGraph (3ms), ReductionPairSAT (4885ms), DependencyGraph (3ms), SizeChangePrinciple (timeout)].
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (1ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (2ms).
 | – Problem 10 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, top, nil, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(cons(X1, X2))proper#(X1)active#(adx(X))active#(X)
top#(ok(X))top#(active(X))proper#(tail(X))proper#(X)
incr#(ok(X))incr#(X)cons#(ok(X1), ok(X2))cons#(X1, X2)
active#(incr(cons(X, L)))incr#(L)active#(cons(X1, X2))cons#(active(X1), X2)
active#(tail(X))tail#(active(X))tail#(ok(X))tail#(X)
active#(incr(cons(X, L)))cons#(s(X), incr(L))proper#(incr(X))proper#(X)
adx#(ok(X))adx#(X)active#(head(X))active#(X)
top#(mark(X))proper#(X)top#(mark(X))top#(proper(X))
proper#(cons(X1, X2))proper#(X2)tail#(mark(X))tail#(X)
head#(ok(X))head#(X)proper#(adx(X))adx#(proper(X))
proper#(s(X))proper#(X)proper#(head(X))head#(proper(X))
active#(adx(cons(X, L)))incr#(cons(X, adx(L)))active#(cons(X1, X2))active#(X1)
proper#(head(X))proper#(X)cons#(mark(X1), X2)cons#(X1, X2)
proper#(incr(X))incr#(proper(X))top#(ok(X))active#(X)
proper#(adx(X))proper#(X)active#(incr(cons(X, L)))s#(X)
incr#(mark(X))incr#(X)active#(adx(X))adx#(active(X))
active#(incr(X))active#(X)head#(mark(X))head#(X)
active#(adx(cons(X, L)))cons#(X, adx(L))active#(incr(X))incr#(active(X))
active#(head(X))head#(active(X))active#(adx(cons(X, L)))adx#(L)
active#(s(X))s#(active(X))s#(ok(X))s#(X)
s#(mark(X))s#(X)active#(nats)adx#(zeros)
adx#(mark(X))adx#(X)proper#(tail(X))tail#(proper(X))
proper#(cons(X1, X2))cons#(proper(X1), proper(X2))active#(s(X))active#(X)
proper#(s(X))s#(proper(X))active#(tail(X))active#(X)
active#(zeros)cons#(0, zeros)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


The following SCCs where found

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

head#(ok(X)) → head#(X)head#(mark(X)) → head#(X)

tail#(ok(X)) → tail#(X)tail#(mark(X)) → tail#(X)

incr#(ok(X)) → incr#(X)incr#(mark(X)) → incr#(X)

adx#(mark(X)) → adx#(X)adx#(ok(X)) → adx#(X)

proper#(adx(X)) → proper#(X)proper#(s(X)) → proper#(X)
proper#(head(X)) → proper#(X)proper#(cons(X1, X2)) → proper#(X1)
proper#(cons(X1, X2)) → proper#(X2)proper#(tail(X)) → proper#(X)
proper#(incr(X)) → proper#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

active#(incr(X)) → active#(X)active#(adx(X)) → active#(X)
active#(s(X)) → active#(X)active#(tail(X)) → active#(X)
active#(head(X)) → active#(X)active#(cons(X1, X2)) → active#(X1)

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

incr#(ok(X))incr#(X)incr#(mark(X))incr#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

incr#(ok(X))incr#(X)incr#(mark(X))incr#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

adx#(mark(X))adx#(X)adx#(ok(X))adx#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

adx#(mark(X))adx#(X)adx#(ok(X))adx#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(adx(X))proper#(X)proper#(s(X))proper#(X)
proper#(head(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(cons(X1, X2))proper#(X2)proper#(tail(X))proper#(X)
proper#(incr(X))proper#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(s(X))proper#(X)proper#(adx(X))proper#(X)
proper#(cons(X1, X2))proper#(X1)proper#(head(X))proper#(X)
proper#(cons(X1, X2))proper#(X2)proper#(tail(X))proper#(X)
proper#(incr(X))proper#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

tail#(ok(X))tail#(X)tail#(mark(X))tail#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

tail#(ok(X))tail#(X)tail#(mark(X))tail#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

head#(ok(X))head#(X)head#(mark(X))head#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

head#(ok(X))head#(X)head#(mark(X))head#(X)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(incr(X))active#(X)active#(adx(X))active#(X)
active#(s(X))active#(X)active#(tail(X))active#(X)
active#(head(X))active#(X)active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(incr(X))active#(X)active#(adx(X))active#(X)
active#(s(X))active#(X)active#(tail(X))active#(X)
active#(head(X))active#(X)active#(cons(X1, X2))active#(X1)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(incr(nil))mark(nil)active(incr(cons(X, L)))mark(cons(s(X), incr(L)))
active(adx(nil))mark(nil)active(adx(cons(X, L)))mark(incr(cons(X, adx(L))))
active(nats)mark(adx(zeros))active(zeros)mark(cons(0, zeros))
active(head(cons(X, L)))mark(X)active(tail(cons(X, L)))mark(L)
active(incr(X))incr(active(X))active(cons(X1, X2))cons(active(X1), X2)
active(s(X))s(active(X))active(adx(X))adx(active(X))
active(head(X))head(active(X))active(tail(X))tail(active(X))
incr(mark(X))mark(incr(X))cons(mark(X1), X2)mark(cons(X1, X2))
s(mark(X))mark(s(X))adx(mark(X))mark(adx(X))
head(mark(X))mark(head(X))tail(mark(X))mark(tail(X))
proper(incr(X))incr(proper(X))proper(nil)ok(nil)
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(adx(X))adx(proper(X))proper(nats)ok(nats)
proper(zeros)ok(zeros)proper(0)ok(0)
proper(head(X))head(proper(X))proper(tail(X))tail(proper(X))
incr(ok(X))ok(incr(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
s(ok(X))ok(s(X))adx(ok(X))ok(adx(X))
head(ok(X))ok(head(X))tail(ok(X))ok(tail(X))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: mark, tail, nats, 0, s, zeros, active, adx, ok, incr, proper, head, cons, nil, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)