YES
The TRS could be proven terminating. The proof took 21 ms.
Problem 1 was processed with processor DependencyGraph (5ms). | Problem 2 was processed with processor SubtermCriterion (0ms).
activate#(n__h(X)) | → | h#(activate(X)) | activate#(n__f(X)) | → | f#(activate(X)) | |
activate#(n__h(X)) | → | activate#(X) | activate#(n__f(X)) | → | activate#(X) |
f(X) | → | g(n__h(n__f(X))) | h(X) | → | n__h(X) | |
f(X) | → | n__f(X) | activate(n__h(X)) | → | h(activate(X)) | |
activate(n__f(X)) | → | f(activate(X)) | activate(X) | → | X |
Termination of terms over the following signature is verified: f, activate, g, n__h, n__f, h
activate#(n__h(X)) → activate#(X) | activate#(n__f(X)) → activate#(X) |
activate#(n__h(X)) | → | activate#(X) | activate#(n__f(X)) | → | activate#(X) |
f(X) | → | g(n__h(n__f(X))) | h(X) | → | n__h(X) | |
f(X) | → | n__f(X) | activate(n__h(X)) | → | h(activate(X)) | |
activate(n__f(X)) | → | f(activate(X)) | activate(X) | → | X |
Termination of terms over the following signature is verified: f, activate, g, n__h, n__f, h
The following projection was used:
Thus, the following dependency pairs are removed:
activate#(n__f(X)) | → | activate#(X) | activate#(n__h(X)) | → | activate#(X) |