YES
The TRS could be proven terminating. The proof took 954 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (112ms).
| Problem 2 was processed with processor SubtermCriterion (20ms).
| Problem 3 was processed with processor SubtermCriterion (0ms).
| Problem 4 was processed with processor SubtermCriterion (1ms).
| Problem 5 was processed with processor SubtermCriterion (0ms).
| Problem 6 was processed with processor PolynomialLinearRange4iUR (519ms).
| | Problem 8 was processed with processor PolynomialLinearRange4iUR (188ms).
| Problem 7 was processed with processor SubtermCriterion (0ms).
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
h#(mark(X)) | → | h#(X) | | proper#(f(X)) | → | f#(proper(X)) |
active#(h(X)) | → | active#(X) | | top#(mark(X)) | → | top#(proper(X)) |
proper#(f(X)) | → | proper#(X) | | top#(ok(X)) | → | top#(active(X)) |
h#(ok(X)) | → | h#(X) | | g#(ok(X)) | → | g#(X) |
active#(f(X)) | → | h#(f(X)) | | active#(f(X)) | → | f#(X) |
top#(ok(X)) | → | active#(X) | | active#(f(X)) | → | f#(active(X)) |
proper#(h(X)) | → | proper#(X) | | proper#(h(X)) | → | h#(proper(X)) |
proper#(g(X)) | → | g#(proper(X)) | | proper#(g(X)) | → | proper#(X) |
f#(mark(X)) | → | f#(X) | | active#(f(X)) | → | active#(X) |
active#(f(X)) | → | g#(h(f(X))) | | top#(mark(X)) | → | proper#(X) |
f#(ok(X)) | → | f#(X) | | active#(h(X)) | → | h#(active(X)) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
The following SCCs where found
f#(mark(X)) → f#(X) | f#(ok(X)) → f#(X) |
proper#(f(X)) → proper#(X) | proper#(h(X)) → proper#(X) |
proper#(g(X)) → proper#(X) |
active#(h(X)) → active#(X) | active#(f(X)) → active#(X) |
top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) |
h#(mark(X)) → h#(X) | h#(ok(X)) → h#(X) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
active#(h(X)) | → | active#(X) | | active#(f(X)) | → | active#(X) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
active#(h(X)) | → | active#(X) | | active#(f(X)) | → | active#(X) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
f#(mark(X)) | → | f#(X) | | f#(ok(X)) | → | f#(X) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
f#(mark(X)) | → | f#(X) | | f#(ok(X)) | → | f#(X) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
proper#(f(X)) | → | proper#(X) | | proper#(h(X)) | → | proper#(X) |
proper#(g(X)) | → | proper#(X) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
proper#(f(X)) | → | proper#(X) | | proper#(h(X)) | → | proper#(X) |
proper#(g(X)) | → | proper#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
Problem 6: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) | | top#(ok(X)) | → | top#(active(X)) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Polynomial Interpretation
- active(x): 2x
- f(x): x
- g(x): x
- h(x): x
- mark(x): 2x
- ok(x): 2x + 1
- proper(x): x
- top(x): 0
- top#(x): 2x + 1
Improved Usable rules
proper(g(X)) | → | g(proper(X)) | | h(ok(X)) | → | ok(h(X)) |
g(ok(X)) | → | ok(g(X)) | | active(h(X)) | → | h(active(X)) |
h(mark(X)) | → | mark(h(X)) | | active(f(X)) | → | mark(g(h(f(X)))) |
proper(h(X)) | → | h(proper(X)) | | proper(f(X)) | → | f(proper(X)) |
f(mark(X)) | → | mark(f(X)) | | f(ok(X)) | → | ok(f(X)) |
active(f(X)) | → | f(active(X)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
top#(ok(X)) | → | top#(active(X)) |
Problem 8: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
top#(mark(X)) | → | top#(proper(X)) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, ok, mark, proper, h, top
Strategy
Polynomial Interpretation
- active(x): 0
- f(x): x
- g(x): x
- h(x): x
- mark(x): 1
- ok(x): 3
- proper(x): 0
- top(x): 0
- top#(x): x + 1
Improved Usable rules
proper(g(X)) | → | g(proper(X)) | | h(ok(X)) | → | ok(h(X)) |
g(ok(X)) | → | ok(g(X)) | | h(mark(X)) | → | mark(h(X)) |
proper(h(X)) | → | h(proper(X)) | | proper(f(X)) | → | f(proper(X)) |
f(mark(X)) | → | mark(f(X)) | | f(ok(X)) | → | ok(f(X)) |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
top#(mark(X)) | → | top#(proper(X)) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
h#(mark(X)) | → | h#(X) | | h#(ok(X)) | → | h#(X) |
Rewrite Rules
active(f(X)) | → | mark(g(h(f(X)))) | | active(f(X)) | → | f(active(X)) |
active(h(X)) | → | h(active(X)) | | f(mark(X)) | → | mark(f(X)) |
h(mark(X)) | → | mark(h(X)) | | proper(f(X)) | → | f(proper(X)) |
proper(g(X)) | → | g(proper(X)) | | proper(h(X)) | → | h(proper(X)) |
f(ok(X)) | → | ok(f(X)) | | g(ok(X)) | → | ok(g(X)) |
h(ok(X)) | → | ok(h(X)) | | top(mark(X)) | → | top(proper(X)) |
top(ok(X)) | → | top(active(X)) |
Original Signature
Termination of terms over the following signature is verified: f, g, active, mark, ok, proper, h, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
h#(mark(X)) | → | h#(X) | | h#(ok(X)) | → | h#(X) |