TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60017 ms.

The following DP Processors were used


Problem 1 remains open; application of the following processors failed [DependencyGraph (2582ms), SubtermCriterion (2ms), DependencyGraph (2398ms), PolynomialLinearRange4iUR (timeout), DependencyGraph (2089ms), PolynomialLinearRange8NegiUR (timeout), DependencyGraph (2050ms), ReductionPairSAT (timeout)].

The following open problems remain:



Open Dependency Pair Problem 1

Dependency Pairs

a__pi#(X)a__2ndspos#(mark(X), a__from(0))a__2ndsneg#(s(N), cons2(X, cons(Y, Z)))a__2ndspos#(mark(N), mark(Z))
mark#(from(X))a__from#(mark(X))mark#(2ndspos(X1, X2))mark#(X2)
mark#(square(X))mark#(X)a__2ndsneg#(s(N), cons2(X, cons(Y, Z)))mark#(Z)
a__2ndspos#(s(N), cons2(X, cons(Y, Z)))a__2ndsneg#(mark(N), mark(Z))mark#(pi(X))mark#(X)
a__2ndsneg#(s(N), cons(X, Z))mark#(Z)mark#(cons2(X1, X2))mark#(X2)
mark#(pi(X))a__pi#(mark(X))mark#(times(X1, X2))mark#(X2)
mark#(negrecip(X))mark#(X)mark#(2ndsneg(X1, X2))mark#(X1)
a__times#(s(X), Y)a__plus#(mark(Y), a__times(mark(X), mark(Y)))mark#(times(X1, X2))mark#(X1)
mark#(2ndsneg(X1, X2))mark#(X2)mark#(2ndsneg(X1, X2))a__2ndsneg#(mark(X1), mark(X2))
mark#(s(X))mark#(X)a__2ndspos#(s(N), cons2(X, cons(Y, Z)))mark#(Y)
a__pi#(X)mark#(X)a__2ndsneg#(s(N), cons2(X, cons(Y, Z)))mark#(N)
a__2ndspos#(s(N), cons(X, Z))mark#(Z)mark#(rcons(X1, X2))mark#(X2)
mark#(plus(X1, X2))a__plus#(mark(X1), mark(X2))a__2ndspos#(s(N), cons2(X, cons(Y, Z)))mark#(N)
mark#(from(X))mark#(X)mark#(cons(X1, X2))mark#(X1)
mark#(plus(X1, X2))mark#(X1)a__plus#(s(X), Y)mark#(Y)
a__2ndsneg#(s(N), cons(X, Z))a__2ndsneg#(s(mark(N)), cons2(X, mark(Z)))mark#(posrecip(X))mark#(X)
a__2ndsneg#(s(N), cons(X, Z))mark#(N)mark#(times(X1, X2))a__times#(mark(X1), mark(X2))
a__2ndspos#(s(N), cons(X, Z))mark#(N)a__from#(X)mark#(X)
a__2ndspos#(s(N), cons2(X, cons(Y, Z)))mark#(Z)mark#(square(X))a__square#(mark(X))
a__times#(s(X), Y)mark#(X)mark#(plus(X1, X2))mark#(X2)
mark#(2ndspos(X1, X2))a__2ndspos#(mark(X1), mark(X2))a__plus#(0, Y)mark#(Y)
a__square#(X)mark#(X)a__2ndspos#(s(N), cons(X, Z))a__2ndspos#(s(mark(N)), cons2(X, mark(Z)))
a__times#(s(X), Y)a__times#(mark(X), mark(Y))a__2ndsneg#(s(N), cons2(X, cons(Y, Z)))mark#(Y)
a__pi#(X)a__from#(0)a__times#(s(X), Y)mark#(Y)
a__plus#(s(X), Y)mark#(X)a__plus#(s(X), Y)a__plus#(mark(X), mark(Y))
a__square#(X)a__times#(mark(X), mark(X))mark#(2ndspos(X1, X2))mark#(X1)
mark#(rcons(X1, X2))mark#(X1)

Rewrite Rules

a__from(X)cons(mark(X), from(s(X)))a__2ndspos(0, Z)rnil
a__2ndspos(s(N), cons(X, Z))a__2ndspos(s(mark(N)), cons2(X, mark(Z)))a__2ndspos(s(N), cons2(X, cons(Y, Z)))rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z)rnila__2ndsneg(s(N), cons(X, Z))a__2ndsneg(s(mark(N)), cons2(X, mark(Z)))
a__2ndsneg(s(N), cons2(X, cons(Y, Z)))rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))a__pi(X)a__2ndspos(mark(X), a__from(0))
a__plus(0, Y)mark(Y)a__plus(s(X), Y)s(a__plus(mark(X), mark(Y)))
a__times(0, Y)0a__times(s(X), Y)a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X)a__times(mark(X), mark(X))mark(from(X))a__from(mark(X))
mark(2ndspos(X1, X2))a__2ndspos(mark(X1), mark(X2))mark(2ndsneg(X1, X2))a__2ndsneg(mark(X1), mark(X2))
mark(pi(X))a__pi(mark(X))mark(plus(X1, X2))a__plus(mark(X1), mark(X2))
mark(times(X1, X2))a__times(mark(X1), mark(X2))mark(square(X))a__square(mark(X))
mark(0)0mark(s(X))s(mark(X))
mark(posrecip(X))posrecip(mark(X))mark(negrecip(X))negrecip(mark(X))
mark(nil)nilmark(cons(X1, X2))cons(mark(X1), X2)
mark(cons2(X1, X2))cons2(X1, mark(X2))mark(rnil)rnil
mark(rcons(X1, X2))rcons(mark(X1), mark(X2))a__from(X)from(X)
a__2ndspos(X1, X2)2ndspos(X1, X2)a__2ndsneg(X1, X2)2ndsneg(X1, X2)
a__pi(X)pi(X)a__plus(X1, X2)plus(X1, X2)
a__times(X1, X2)times(X1, X2)a__square(X)square(X)

Original Signature

Termination of terms over the following signature is verified: plus, a__square, posrecip, negrecip, cons2, a__pi, rnil, a__2ndspos, a__plus, mark, a__2ndsneg, from, rcons, 2ndspos, 0, s, times, 2ndsneg, square, a__times, pi, a__from, nil, cons