YES
The TRS could be proven terminating. The proof took 21 ms.
Problem 1 was processed with processor DependencyGraph (3ms).
zprimes# | → | nats#(s(s(0))) | zprimes# | → | sieve#(nats(s(s(0)))) |
filter(cons(X), 0, M) | → | cons(0) | filter(cons(X), s(N), M) | → | cons(X) | |
sieve(cons(0)) | → | cons(0) | sieve(cons(s(N))) | → | cons(s(N)) | |
nats(N) | → | cons(N) | zprimes | → | sieve(nats(s(s(0)))) |
Termination of terms over the following signature is verified: nats, 0, s, sieve, zprimes, filter, cons