TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60000 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (140ms).
 | – Problem 2 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (47ms), PolynomialLinearRange4iUR (2090ms), DependencyGraph (48ms), PolynomialLinearRange8NegiUR (12397ms), DependencyGraph (41ms), ReductionPairSAT (9212ms), DependencyGraph (37ms), SizeChangePrinciple (timeout)].

The following open problems remain:



Open Dependency Pair Problem 2

Dependency Pairs

activate#(n__nats(X))activate#(X)activate#(n__s(X))activate#(X)
activate#(n__filter(X1, X2, X3))filter#(activate(X1), activate(X2), activate(X3))filter#(cons(X, Y), 0, M)activate#(Y)
activate#(n__filter(X1, X2, X3))activate#(X3)activate#(n__filter(X1, X2, X3))activate#(X2)
filter#(cons(X, Y), s(N), M)activate#(Y)sieve#(cons(s(N), Y))activate#(Y)
activate#(n__sieve(X))activate#(X)sieve#(cons(0, Y))activate#(Y)
activate#(n__sieve(X))sieve#(activate(X))activate#(n__filter(X1, X2, X3))activate#(X1)

Rewrite Rules

filter(cons(X, Y), 0, M)cons(0, n__filter(activate(Y), M, M))filter(cons(X, Y), s(N), M)cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y))cons(0, n__sieve(activate(Y)))sieve(cons(s(N), Y))cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N)cons(N, n__nats(n__s(N)))zprimessieve(nats(s(s(0))))
filter(X1, X2, X3)n__filter(X1, X2, X3)sieve(X)n__sieve(X)
nats(X)n__nats(X)s(X)n__s(X)
activate(n__filter(X1, X2, X3))filter(activate(X1), activate(X2), activate(X3))activate(n__sieve(X))sieve(activate(X))
activate(n__nats(X))nats(activate(X))activate(n__s(X))s(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: n__nats, n__s, activate, nats, 0, sieve, s, n__filter, zprimes, n__sieve, filter, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

sieve#(cons(s(N), Y))s#(N)activate#(n__nats(X))activate#(X)
activate#(n__s(X))activate#(X)activate#(n__filter(X1, X2, X3))filter#(activate(X1), activate(X2), activate(X3))
activate#(n__nats(X))nats#(activate(X))filter#(cons(X, Y), 0, M)activate#(Y)
activate#(n__filter(X1, X2, X3))activate#(X3)zprimes#s#(0)
zprimes#nats#(s(s(0)))zprimes#sieve#(nats(s(s(0))))
zprimes#s#(s(0))activate#(n__filter(X1, X2, X3))activate#(X2)
filter#(cons(X, Y), s(N), M)activate#(Y)sieve#(cons(s(N), Y))activate#(Y)
activate#(n__sieve(X))activate#(X)sieve#(cons(0, Y))activate#(Y)
activate#(n__sieve(X))sieve#(activate(X))activate#(n__filter(X1, X2, X3))activate#(X1)
activate#(n__s(X))s#(activate(X))

Rewrite Rules

filter(cons(X, Y), 0, M)cons(0, n__filter(activate(Y), M, M))filter(cons(X, Y), s(N), M)cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y))cons(0, n__sieve(activate(Y)))sieve(cons(s(N), Y))cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N)cons(N, n__nats(n__s(N)))zprimessieve(nats(s(s(0))))
filter(X1, X2, X3)n__filter(X1, X2, X3)sieve(X)n__sieve(X)
nats(X)n__nats(X)s(X)n__s(X)
activate(n__filter(X1, X2, X3))filter(activate(X1), activate(X2), activate(X3))activate(n__sieve(X))sieve(activate(X))
activate(n__nats(X))nats(activate(X))activate(n__s(X))s(activate(X))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, n__s, n__nats, nats, 0, s, sieve, n__filter, zprimes, filter, n__sieve, cons

Strategy


The following SCCs where found

activate#(n__filter(X1, X2, X3)) → activate#(X2)filter#(cons(X, Y), s(N), M) → activate#(Y)
sieve#(cons(s(N), Y)) → activate#(Y)activate#(n__nats(X)) → activate#(X)
activate#(n__filter(X1, X2, X3)) → filter#(activate(X1), activate(X2), activate(X3))activate#(n__s(X)) → activate#(X)
activate#(n__sieve(X)) → activate#(X)filter#(cons(X, Y), 0, M) → activate#(Y)
activate#(n__filter(X1, X2, X3)) → activate#(X3)sieve#(cons(0, Y)) → activate#(Y)
activate#(n__sieve(X)) → sieve#(activate(X))activate#(n__filter(X1, X2, X3)) → activate#(X1)