YES

The TRS could be proven terminating. The proof took 87 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (56ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 | – Problem 3 was processed with processor SubtermCriterion (3ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

add#(s(X), Y)add#(X, Y)activate#(n__fib1(X1, X2))fib1#(activate(X1), activate(X2))
activate#(n__fib1(X1, X2))activate#(X2)activate#(n__add(X1, X2))activate#(X1)
fib#(N)sel#(N, fib1(s(0), s(0)))activate#(n__add(X1, X2))activate#(X2)
fib#(N)fib1#(s(0), s(0))activate#(n__fib1(X1, X2))activate#(X1)
sel#(s(N), cons(X, XS))sel#(N, activate(XS))sel#(s(N), cons(X, XS))activate#(XS)
activate#(n__add(X1, X2))add#(activate(X1), activate(X2))

Rewrite Rules

fib(N)sel(N, fib1(s(0), s(0)))fib1(X, Y)cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X)Xadd(s(X), Y)s(add(X, Y))
sel(0, cons(X, XS))Xsel(s(N), cons(X, XS))sel(N, activate(XS))
fib1(X1, X2)n__fib1(X1, X2)add(X1, X2)n__add(X1, X2)
activate(n__fib1(X1, X2))fib1(activate(X1), activate(X2))activate(n__add(X1, X2))add(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 0, s, n__add, fib1, add, sel, fib, n__fib1, cons

Strategy


The following SCCs where found

add#(s(X), Y) → add#(X, Y)

activate#(n__fib1(X1, X2)) → activate#(X2)activate#(n__add(X1, X2)) → activate#(X1)
activate#(n__add(X1, X2)) → activate#(X2)activate#(n__fib1(X1, X2)) → activate#(X1)

sel#(s(N), cons(X, XS)) → sel#(N, activate(XS))

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(s(X), Y)add#(X, Y)

Rewrite Rules

fib(N)sel(N, fib1(s(0), s(0)))fib1(X, Y)cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X)Xadd(s(X), Y)s(add(X, Y))
sel(0, cons(X, XS))Xsel(s(N), cons(X, XS))sel(N, activate(XS))
fib1(X1, X2)n__fib1(X1, X2)add(X1, X2)n__add(X1, X2)
activate(n__fib1(X1, X2))fib1(activate(X1), activate(X2))activate(n__add(X1, X2))add(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 0, s, n__add, fib1, add, sel, fib, n__fib1, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(s(X), Y)add#(X, Y)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__fib1(X1, X2))activate#(X2)activate#(n__add(X1, X2))activate#(X1)
activate#(n__add(X1, X2))activate#(X2)activate#(n__fib1(X1, X2))activate#(X1)

Rewrite Rules

fib(N)sel(N, fib1(s(0), s(0)))fib1(X, Y)cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X)Xadd(s(X), Y)s(add(X, Y))
sel(0, cons(X, XS))Xsel(s(N), cons(X, XS))sel(N, activate(XS))
fib1(X1, X2)n__fib1(X1, X2)add(X1, X2)n__add(X1, X2)
activate(n__fib1(X1, X2))fib1(activate(X1), activate(X2))activate(n__add(X1, X2))add(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 0, s, n__add, fib1, add, sel, fib, n__fib1, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__fib1(X1, X2))activate#(X2)activate#(n__add(X1, X2))activate#(X1)
activate#(n__add(X1, X2))activate#(X2)activate#(n__fib1(X1, X2))activate#(X1)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sel#(s(N), cons(X, XS))sel#(N, activate(XS))

Rewrite Rules

fib(N)sel(N, fib1(s(0), s(0)))fib1(X, Y)cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X)Xadd(s(X), Y)s(add(X, Y))
sel(0, cons(X, XS))Xsel(s(N), cons(X, XS))sel(N, activate(XS))
fib1(X1, X2)n__fib1(X1, X2)add(X1, X2)n__add(X1, X2)
activate(n__fib1(X1, X2))fib1(activate(X1), activate(X2))activate(n__add(X1, X2))add(activate(X1), activate(X2))
activate(X)X

Original Signature

Termination of terms over the following signature is verified: activate, 0, s, n__add, fib1, add, sel, fib, n__fib1, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sel#(s(N), cons(X, XS))sel#(N, activate(XS))