TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (2824ms).
 | – Problem 2 was processed with processor SubtermCriterion (2ms).
 | – Problem 3 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (2500ms), DependencyGraph (4ms), PolynomialLinearRange8NegiUR (7500ms), DependencyGraph (5ms), ReductionPairSAT (4075ms), DependencyGraph (4ms), ReductionPairSAT (4110ms), DependencyGraph (4ms), SizeChangePrinciple (timeout)].
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 11 was processed with processor ReductionPairSAT (87ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (3ms).
 | – Problem 7 was processed with processor SubtermCriterion (2ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 12 was processed with processor ReductionPairSAT (75ms).
 | – Problem 9 was processed with processor SubtermCriterion (0ms).
 | – Problem 10 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 13 was processed with processor ReductionPairSAT (78ms).

The following open problems remain:



Open Dependency Pair Problem 3

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, add, fib1, sel, fib, top, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(fib(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
top#(ok(X))top#(active(X))fib1#(ok(X1), ok(X2))fib1#(X1, X2)
add#(X1, mark(X2))add#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)
active#(cons(X1, X2))cons#(active(X1), X2)fib#(mark(X))fib#(X)
active#(fib(X))fib#(active(X))active#(fib1(X, Y))add#(X, Y)
active#(add(X1, X2))add#(active(X1), X2)active#(sel(X1, X2))active#(X2)
top#(mark(X))proper#(X)proper#(add(X1, X2))proper#(X2)
top#(mark(X))top#(proper(X))proper#(cons(X1, X2))proper#(X2)
active#(fib(X))active#(X)active#(fib1(X, Y))cons#(X, fib1(Y, add(X, Y)))
proper#(add(X1, X2))proper#(X1)add#(mark(X1), X2)add#(X1, X2)
active#(fib1(X1, X2))active#(X1)sel#(X1, mark(X2))sel#(X1, X2)
fib1#(mark(X1), X2)fib1#(X1, X2)active#(fib1(X1, X2))fib1#(X1, active(X2))
proper#(fib1(X1, X2))fib1#(proper(X1), proper(X2))proper#(s(X))proper#(X)
active#(add(s(X), Y))add#(X, Y)active#(add(X1, X2))active#(X2)
sel#(ok(X1), ok(X2))sel#(X1, X2)fib#(ok(X))fib#(X)
active#(fib1(X1, X2))active#(X2)active#(fib1(X, Y))fib1#(Y, add(X, Y))
active#(cons(X1, X2))active#(X1)sel#(mark(X1), X2)sel#(X1, X2)
active#(fib(N))fib1#(s(0), s(0))proper#(add(X1, X2))add#(proper(X1), proper(X2))
proper#(fib1(X1, X2))proper#(X1)cons#(mark(X1), X2)cons#(X1, X2)
active#(add(X1, X2))add#(X1, active(X2))add#(ok(X1), ok(X2))add#(X1, X2)
top#(ok(X))active#(X)proper#(sel(X1, X2))sel#(proper(X1), proper(X2))
active#(add(s(X), Y))s#(add(X, Y))active#(fib1(X1, X2))fib1#(active(X1), X2)
active#(sel(X1, X2))active#(X1)active#(sel(s(N), cons(X, XS)))sel#(N, XS)
proper#(fib1(X1, X2))proper#(X2)proper#(sel(X1, X2))proper#(X2)
fib1#(X1, mark(X2))fib1#(X1, X2)active#(add(X1, X2))active#(X1)
active#(sel(X1, X2))sel#(active(X1), X2)active#(sel(X1, X2))sel#(X1, active(X2))
active#(fib(N))sel#(N, fib1(s(0), s(0)))active#(s(X))s#(active(X))
s#(ok(X))s#(X)active#(fib(N))s#(0)
proper#(sel(X1, X2))proper#(X1)s#(mark(X))s#(X)
proper#(cons(X1, X2))cons#(proper(X1), proper(X2))active#(s(X))active#(X)
proper#(s(X))s#(proper(X))proper#(fib(X))fib#(proper(X))

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


The following SCCs where found

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

proper#(sel(X1, X2)) → proper#(X1)proper#(s(X)) → proper#(X)
proper#(fib(X)) → proper#(X)proper#(cons(X1, X2)) → proper#(X1)
proper#(fib1(X1, X2)) → proper#(X1)proper#(cons(X1, X2)) → proper#(X2)
proper#(add(X1, X2)) → proper#(X1)proper#(fib1(X1, X2)) → proper#(X2)
proper#(sel(X1, X2)) → proper#(X2)proper#(add(X1, X2)) → proper#(X2)

active#(add(X1, X2)) → active#(X1)active#(add(X1, X2)) → active#(X2)
active#(sel(X1, X2)) → active#(X2)active#(sel(X1, X2)) → active#(X1)
active#(s(X)) → active#(X)active#(fib(X)) → active#(X)
active#(fib1(X1, X2)) → active#(X2)active#(fib1(X1, X2)) → active#(X1)
active#(cons(X1, X2)) → active#(X1)

sel#(mark(X1), X2) → sel#(X1, X2)sel#(ok(X1), ok(X2)) → sel#(X1, X2)
sel#(X1, mark(X2)) → sel#(X1, X2)

fib#(ok(X)) → fib#(X)fib#(mark(X)) → fib#(X)

fib1#(ok(X1), ok(X2)) → fib1#(X1, X2)fib1#(X1, mark(X2)) → fib1#(X1, X2)
fib1#(mark(X1), X2) → fib1#(X1, X2)

add#(X1, mark(X2)) → add#(X1, X2)add#(mark(X1), X2) → add#(X1, X2)
add#(ok(X1), ok(X2)) → add#(X1, X2)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fib1#(ok(X1), ok(X2))fib1#(X1, X2)fib1#(X1, mark(X2))fib1#(X1, X2)
fib1#(mark(X1), X2)fib1#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fib1#(ok(X1), ok(X2))fib1#(X1, X2)fib1#(mark(X1), X2)fib1#(X1, X2)

Problem 11: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

fib1#(X1, mark(X2))fib1#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, add, fib1, sel, fib, top, cons

Strategy


Function Precedence

mark < fib1 = add = fib1# = fib = 0 = s = active = ok = proper = sel = cons = top

Argument Filtering

mark: 1
fib1: all arguments are removed from fib1
add: all arguments are removed from add
fib1#: collapses to 2
fib: all arguments are removed from fib
0: all arguments are removed from 0
s: all arguments are removed from s
active: all arguments are removed from active
ok: collapses to 1
proper: all arguments are removed from proper
sel: 1 2
cons: 1 2
top: 1

Status

mark: multiset
fib1: multiset
add: multiset
fib: multiset
0: multiset
s: multiset
active: multiset
proper: multiset
sel: lexicographic with permutation 1 → 2 2 → 1
cons: lexicographic with permutation 1 → 2 2 → 1
top: lexicographic with permutation 1 → 1

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

fib1#(X1, mark(X2)) → fib1#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(add(X1, X2))active#(X1)active#(add(X1, X2))active#(X2)
active#(sel(X1, X2))active#(X2)active#(sel(X1, X2))active#(X1)
active#(s(X))active#(X)active#(fib(X))active#(X)
active#(fib1(X1, X2))active#(X2)active#(fib1(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(add(X1, X2))active#(X1)active#(add(X1, X2))active#(X2)
active#(sel(X1, X2))active#(X2)active#(sel(X1, X2))active#(X1)
active#(s(X))active#(X)active#(fib(X))active#(X)
active#(fib1(X1, X2))active#(X2)active#(fib1(X1, X2))active#(X1)
active#(cons(X1, X2))active#(X1)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(sel(X1, X2))proper#(X1)proper#(s(X))proper#(X)
proper#(fib(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(fib1(X1, X2))proper#(X1)proper#(cons(X1, X2))proper#(X2)
proper#(add(X1, X2))proper#(X1)proper#(fib1(X1, X2))proper#(X2)
proper#(sel(X1, X2))proper#(X2)proper#(add(X1, X2))proper#(X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(sel(X1, X2))proper#(X1)proper#(s(X))proper#(X)
proper#(fib(X))proper#(X)proper#(cons(X1, X2))proper#(X1)
proper#(fib1(X1, X2))proper#(X1)proper#(cons(X1, X2))proper#(X2)
proper#(add(X1, X2))proper#(X1)proper#(fib1(X1, X2))proper#(X2)
proper#(sel(X1, X2))proper#(X2)proper#(add(X1, X2))proper#(X2)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)add#(mark(X1), X2)add#(X1, X2)
add#(ok(X1), ok(X2))add#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

add#(mark(X1), X2)add#(X1, X2)add#(ok(X1), ok(X2))add#(X1, X2)

Problem 12: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

add#(X1, mark(X2))add#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, add, fib1, sel, fib, top, cons

Strategy


Function Precedence

mark < add# < fib1 = add = fib = 0 = s = active = ok = proper = sel = cons = top

Argument Filtering

mark: 1
fib1: 2
add: all arguments are removed from add
fib: all arguments are removed from fib
0: all arguments are removed from 0
s: all arguments are removed from s
active: all arguments are removed from active
ok: all arguments are removed from ok
proper: all arguments are removed from proper
add#: collapses to 2
sel: 1 2
cons: 1 2
top: all arguments are removed from top

Status

mark: multiset
fib1: lexicographic with permutation 2 → 1
add: multiset
fib: multiset
0: multiset
s: multiset
active: multiset
ok: multiset
proper: multiset
sel: lexicographic with permutation 1 → 1 2 → 2
cons: lexicographic with permutation 1 → 2 2 → 1
top: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

add#(X1, mark(X2)) → add#(X1, X2)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

fib#(ok(X))fib#(X)fib#(mark(X))fib#(X)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

fib#(ok(X))fib#(X)fib#(mark(X))fib#(X)

Problem 10: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)
sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, mark, ok, proper, fib1, add, sel, fib, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)

Problem 13: ReductionPairSAT



Dependency Pair Problem

Dependency Pairs

sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(fib(N))mark(sel(N, fib1(s(0), s(0))))active(fib1(X, Y))mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X))mark(X)active(add(s(X), Y))mark(s(add(X, Y)))
active(sel(0, cons(X, XS)))mark(X)active(sel(s(N), cons(X, XS)))mark(sel(N, XS))
active(fib(X))fib(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))active(fib1(X1, X2))fib1(active(X1), X2)
active(fib1(X1, X2))fib1(X1, active(X2))active(s(X))s(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(add(X1, X2))add(active(X1), X2)
active(add(X1, X2))add(X1, active(X2))fib(mark(X))mark(fib(X))
sel(mark(X1), X2)mark(sel(X1, X2))sel(X1, mark(X2))mark(sel(X1, X2))
fib1(mark(X1), X2)mark(fib1(X1, X2))fib1(X1, mark(X2))mark(fib1(X1, X2))
s(mark(X))mark(s(X))cons(mark(X1), X2)mark(cons(X1, X2))
add(mark(X1), X2)mark(add(X1, X2))add(X1, mark(X2))mark(add(X1, X2))
proper(fib(X))fib(proper(X))proper(sel(X1, X2))sel(proper(X1), proper(X2))
proper(fib1(X1, X2))fib1(proper(X1), proper(X2))proper(s(X))s(proper(X))
proper(0)ok(0)proper(cons(X1, X2))cons(proper(X1), proper(X2))
proper(add(X1, X2))add(proper(X1), proper(X2))fib(ok(X))ok(fib(X))
sel(ok(X1), ok(X2))ok(sel(X1, X2))fib1(ok(X1), ok(X2))ok(fib1(X1, X2))
s(ok(X))ok(s(X))cons(ok(X1), ok(X2))ok(cons(X1, X2))
add(ok(X1), ok(X2))ok(add(X1, X2))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: 0, s, active, ok, mark, proper, add, fib1, sel, fib, top, cons

Strategy


Function Precedence

sel# < mark < fib1 = add = fib = 0 = s = active = ok = proper = sel = cons = top

Argument Filtering

mark: 1
sel#: collapses to 2
fib1: all arguments are removed from fib1
add: collapses to 1
fib: all arguments are removed from fib
0: all arguments are removed from 0
s: all arguments are removed from s
active: all arguments are removed from active
ok: collapses to 1
proper: all arguments are removed from proper
sel: all arguments are removed from sel
cons: all arguments are removed from cons
top: collapses to 1

Status

mark: multiset
fib1: multiset
fib: multiset
0: multiset
s: multiset
active: multiset
proper: multiset
sel: multiset
cons: multiset

Usable Rules

There are no usable rules.

The dependency pairs and usable rules are stronlgy conservative!

Eliminated dependency pairs

The following dependency pairs (at least) can be eliminated according to the given precedence.

sel#(X1, mark(X2)) → sel#(X1, X2)