YES

The TRS could be proven terminating. The proof took 693 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (51ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (367ms).
 |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (159ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).
 | – Problem 5 was processed with processor SubtermCriterion (1ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

proper#(f(X))f#(proper(X))active#(f(g(X)))g#(X)
active#(c)f#(g(c))proper#(f(X))proper#(X)
top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))
g#(ok(X))g#(X)active#(c)g#(c)
top#(ok(X))active#(X)proper#(g(X))g#(proper(X))
proper#(g(X))proper#(X)top#(mark(X))proper#(X)
f#(ok(X))f#(X)

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, mark, ok, proper, top

Strategy


The following SCCs where found

g#(ok(X)) → g#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

f#(ok(X)) → f#(X)

proper#(f(X)) → proper#(X)proper#(g(X)) → proper#(X)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, mark, ok, proper, top

Strategy


Polynomial Interpretation

Improved Usable rules

proper(g(X))g(proper(X))g(ok(X))ok(g(X))
active(f(g(X)))mark(g(X))proper(c)ok(c)
proper(f(X))f(proper(X))f(ok(X))ok(f(X))
active(c)mark(f(g(c)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

top#(mark(X))top#(proper(X))

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

top#(ok(X))top#(active(X))

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, ok, mark, proper, top

Strategy


Polynomial Interpretation

Improved Usable rules

active(f(g(X)))mark(g(X))active(c)mark(f(g(c)))

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

top#(ok(X))top#(active(X))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

g#(ok(X))g#(X)

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, mark, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

g#(ok(X))g#(X)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

f#(ok(X))f#(X)

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, mark, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

f#(ok(X))f#(X)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(f(X))proper#(X)proper#(g(X))proper#(X)

Rewrite Rules

active(c)mark(f(g(c)))active(f(g(X)))mark(g(X))
proper(c)ok(c)proper(f(X))f(proper(X))
proper(g(X))g(proper(X))f(ok(X))ok(f(X))
g(ok(X))ok(g(X))top(mark(X))top(proper(X))
top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, c, active, mark, ok, proper, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(f(X))proper#(X)proper#(g(X))proper#(X)