YES

The TRS could be proven terminating. The proof took 60001 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (14ms).
 | – Problem 2 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

activate#(n__from(X))from#(activate(X))activate#(n__s(X))activate#(X)
2nd#(cons(X, X1))2nd#(cons1(X, activate(X1)))activate#(n__from(X))activate#(X)
2nd#(cons(X, X1))activate#(X1)activate#(n__s(X))s#(activate(X))

Rewrite Rules

2nd(cons1(X, cons(Y, Z)))Y2nd(cons(X, X1))2nd(cons1(X, activate(X1)))
from(X)cons(X, n__from(n__s(X)))from(X)n__from(X)
s(X)n__s(X)activate(n__from(X))from(activate(X))
activate(n__s(X))s(activate(X))activate(X)X

Original Signature

Termination of terms over the following signature is verified: 2nd, activate, n__s, cons1, n__from, s, from, cons

Strategy


The following SCCs where found

activate#(n__s(X)) → activate#(X)activate#(n__from(X)) → activate#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

activate#(n__s(X))activate#(X)activate#(n__from(X))activate#(X)

Rewrite Rules

2nd(cons1(X, cons(Y, Z)))Y2nd(cons(X, X1))2nd(cons1(X, activate(X1)))
from(X)cons(X, n__from(n__s(X)))from(X)n__from(X)
s(X)n__s(X)activate(n__from(X))from(activate(X))
activate(n__s(X))s(activate(X))activate(X)X

Original Signature

Termination of terms over the following signature is verified: 2nd, activate, n__s, cons1, n__from, s, from, cons

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

activate#(n__s(X))activate#(X)activate#(n__from(X))activate#(X)