TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60018 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (1152ms).
 | – Problem 2 was processed with processor SubtermCriterion (3ms).
 |    | – Problem 10 was processed with processor PolynomialLinearRange4iUR (38ms).
 | – Problem 3 was processed with processor SubtermCriterion (2ms).
 | – Problem 4 remains open; application of the following processors failed [SubtermCriterion (0ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (3401ms), DependencyGraph (25ms), PolynomialLinearRange4iUR (2745ms), DependencyGraph (3ms), PolynomialLinearRange8NegiUR (30000ms), DependencyGraph (timeout), ReductionPairSAT (3566ms), DependencyGraph (3ms), SizeChangePrinciple (timeout)].
 | – Problem 5 was processed with processor SubtermCriterion (3ms).
 | – Problem 6 was processed with processor SubtermCriterion (0ms).
 | – Problem 7 was processed with processor SubtermCriterion (1ms).
 | – Problem 8 was processed with processor SubtermCriterion (1ms).
 | – Problem 9 was processed with processor SubtermCriterion (1ms).

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

top#(mark(X))top#(proper(X))top#(ok(X))top#(active(X))

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, ok, mark, proper, sel, top, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

sel#(mark(X1), X2)sel#(X1, X2)active#(f(X))f#(g(X))
g#(mark(X))g#(X)proper#(cons(X1, X2))proper#(X1)
active#(g(X))active#(X)top#(ok(X))top#(active(X))
g#(ok(X))g#(X)cons#(mark(X1), X2)cons#(X1, X2)
active#(f(X))g#(X)cons#(ok(X1), ok(X2))cons#(X1, X2)
active#(f(X))cons#(X, f(g(X)))top#(ok(X))active#(X)
proper#(sel(X1, X2))sel#(proper(X1), proper(X2))active#(cons(X1, X2))cons#(active(X1), X2)
active#(g(0))s#(0)active#(sel(X1, X2))active#(X2)
active#(sel(X1, X2))active#(X1)proper#(sel(X1, X2))proper#(X2)
f#(mark(X))f#(X)top#(mark(X))proper#(X)
f#(ok(X))f#(X)proper#(f(X))f#(proper(X))
active#(sel(X1, X2))sel#(active(X1), X2)active#(sel(X1, X2))sel#(X1, active(X2))
active#(sel(s(X), cons(Y, Z)))sel#(X, Z)proper#(f(X))proper#(X)
top#(mark(X))top#(proper(X))proper#(cons(X1, X2))proper#(X2)
active#(g(s(X)))s#(s(g(X)))active#(s(X))s#(active(X))
sel#(X1, mark(X2))sel#(X1, X2)s#(ok(X))s#(X)
s#(mark(X))s#(X)proper#(sel(X1, X2))proper#(X1)
active#(f(X))f#(active(X))proper#(s(X))proper#(X)
proper#(cons(X1, X2))cons#(proper(X1), proper(X2))active#(s(X))active#(X)
sel#(ok(X1), ok(X2))sel#(X1, X2)proper#(s(X))s#(proper(X))
proper#(g(X))g#(proper(X))active#(g(X))g#(active(X))
active#(g(s(X)))s#(g(X))proper#(g(X))proper#(X)
active#(f(X))active#(X)active#(g(s(X)))g#(X)
active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


The following SCCs where found

f#(mark(X)) → f#(X)f#(ok(X)) → f#(X)

cons#(mark(X1), X2) → cons#(X1, X2)cons#(ok(X1), ok(X2)) → cons#(X1, X2)

sel#(mark(X1), X2) → sel#(X1, X2)sel#(ok(X1), ok(X2)) → sel#(X1, X2)
sel#(X1, mark(X2)) → sel#(X1, X2)

proper#(sel(X1, X2)) → proper#(X1)proper#(s(X)) → proper#(X)
proper#(cons(X1, X2)) → proper#(X1)proper#(f(X)) → proper#(X)
proper#(cons(X1, X2)) → proper#(X2)proper#(g(X)) → proper#(X)
proper#(sel(X1, X2)) → proper#(X2)

active#(sel(X1, X2)) → active#(X2)active#(g(X)) → active#(X)
active#(s(X)) → active#(X)active#(sel(X1, X2)) → active#(X1)
active#(f(X)) → active#(X)active#(cons(X1, X2)) → active#(X1)

g#(mark(X)) → g#(X)g#(ok(X)) → g#(X)

top#(mark(X)) → top#(proper(X))top#(ok(X)) → top#(active(X))

s#(mark(X)) → s#(X)s#(ok(X)) → s#(X)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)
sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

sel#(mark(X1), X2)sel#(X1, X2)sel#(ok(X1), ok(X2))sel#(X1, X2)

Problem 10: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

sel#(X1, mark(X2))sel#(X1, X2)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, ok, mark, proper, sel, top, cons

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

sel#(X1, mark(X2))sel#(X1, X2)

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

cons#(mark(X1), X2)cons#(X1, X2)cons#(ok(X1), ok(X2))cons#(X1, X2)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

g#(mark(X))g#(X)g#(ok(X))g#(X)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

g#(mark(X))g#(X)g#(ok(X))g#(X)

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

f#(mark(X))f#(X)f#(ok(X))f#(X)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

f#(mark(X))f#(X)f#(ok(X))f#(X)

Problem 7: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

active#(sel(X1, X2))active#(X2)active#(g(X))active#(X)
active#(s(X))active#(X)active#(sel(X1, X2))active#(X1)
active#(f(X))active#(X)active#(cons(X1, X2))active#(X1)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

active#(g(X))active#(X)active#(sel(X1, X2))active#(X2)
active#(sel(X1, X2))active#(X1)active#(s(X))active#(X)
active#(f(X))active#(X)active#(cons(X1, X2))active#(X1)

Problem 8: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

s#(mark(X))s#(X)s#(ok(X))s#(X)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

s#(mark(X))s#(X)s#(ok(X))s#(X)

Problem 9: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

proper#(sel(X1, X2))proper#(X1)proper#(s(X))proper#(X)
proper#(cons(X1, X2))proper#(X1)proper#(f(X))proper#(X)
proper#(cons(X1, X2))proper#(X2)proper#(g(X))proper#(X)
proper#(sel(X1, X2))proper#(X2)

Rewrite Rules

active(f(X))mark(cons(X, f(g(X))))active(g(0))mark(s(0))
active(g(s(X)))mark(s(s(g(X))))active(sel(0, cons(X, Y)))mark(X)
active(sel(s(X), cons(Y, Z)))mark(sel(X, Z))active(f(X))f(active(X))
active(cons(X1, X2))cons(active(X1), X2)active(g(X))g(active(X))
active(s(X))s(active(X))active(sel(X1, X2))sel(active(X1), X2)
active(sel(X1, X2))sel(X1, active(X2))f(mark(X))mark(f(X))
cons(mark(X1), X2)mark(cons(X1, X2))g(mark(X))mark(g(X))
s(mark(X))mark(s(X))sel(mark(X1), X2)mark(sel(X1, X2))
sel(X1, mark(X2))mark(sel(X1, X2))proper(f(X))f(proper(X))
proper(cons(X1, X2))cons(proper(X1), proper(X2))proper(g(X))g(proper(X))
proper(0)ok(0)proper(s(X))s(proper(X))
proper(sel(X1, X2))sel(proper(X1), proper(X2))f(ok(X))ok(f(X))
cons(ok(X1), ok(X2))ok(cons(X1, X2))g(ok(X))ok(g(X))
s(ok(X))ok(s(X))sel(ok(X1), ok(X2))ok(sel(X1, X2))
top(mark(X))top(proper(X))top(ok(X))top(active(X))

Original Signature

Termination of terms over the following signature is verified: f, g, 0, s, active, mark, ok, proper, sel, cons, top

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

proper#(sel(X1, X2))proper#(X1)proper#(s(X))proper#(X)
proper#(cons(X1, X2))proper#(X1)proper#(f(X))proper#(X)
proper#(cons(X1, X2))proper#(X2)proper#(g(X))proper#(X)
proper#(sel(X1, X2))proper#(X2)