TIMEOUT
The TRS could not be proven terminating. The proof attempt took 60000 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (15812ms).
| Problem 2 was processed with processor SubtermCriterion (2ms).
| | Problem 14 remains open; application of the following processors failed [DependencyGraph (5ms), PolynomialLinearRange4iUR (13ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (17ms), DependencyGraph (4ms), PolynomialLinearRange4iUR (16ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (12ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (11ms), DependencyGraph (6ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (22ms), DependencyGraph (5ms)].
| Problem 3 was processed with processor SubtermCriterion (4ms).
| | Problem 15 remains open; application of the following processors failed [DependencyGraph (6ms), PolynomialLinearRange4iUR (7ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (11ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (10ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (6ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (11ms), DependencyGraph (5ms)].
| Problem 4 was processed with processor SubtermCriterion (2ms).
| Problem 5 was processed with processor SubtermCriterion (1ms).
| Problem 6 was processed with processor SubtermCriterion (1ms).
| Problem 7 was processed with processor SubtermCriterion (1ms).
| | Problem 16 was processed with processor PolynomialLinearRange4iUR (78ms).
| Problem 8 was processed with processor SubtermCriterion (3ms).
| | Problem 17 was processed with processor PolynomialLinearRange4iUR (86ms).
| | | Problem 19 was processed with processor PolynomialLinearRange4iUR (80ms).
| Problem 9 was processed with processor SubtermCriterion (1ms).
| Problem 10 was processed with processor SubtermCriterion (1ms).
| Problem 11 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (2274ms), PolynomialLinearRange4iUR (1687ms), DependencyGraph (2220ms), PolynomialLinearRange4iUR (2000ms), DependencyGraph (2211ms), PolynomialLinearRange4iUR (2501ms), DependencyGraph (2288ms), PolynomialLinearRange4iUR (2500ms), DependencyGraph (2211ms), PolynomialLinearRange4iUR (2500ms), DependencyGraph (2366ms), PolynomialLinearRange4iUR (2503ms), DependencyGraph (2211ms), PolynomialLinearRange4iUR (3333ms), DependencyGraph (2254ms), PolynomialLinearRange8NegiUR (timeout)].
| Problem 12 was processed with processor SubtermCriterion (3ms).
| | Problem 18 was processed with processor PolynomialLinearRange4iUR (108ms).
| | | Problem 20 was processed with processor PolynomialLinearRange4iUR (40ms).
| | | | Problem 21 was processed with processor PolynomialLinearRange4iUR (78ms).
| | | | | Problem 22 was processed with processor PolynomialLinearRange4iUR (29ms).
| | | | | | Problem 23 was processed with processor PolynomialLinearRange4iUR (31ms).
| | | | | | | Problem 24 was processed with processor PolynomialLinearRange4iUR (19ms).
| Problem 13 was processed with processor SubtermCriterion (2ms).
The following open problems remain:
Open Dependency Pair Problem 11
Dependency Pairs
active#(isNat(s(N))) | → | mark#(isNat(N)) | | mark#(cons(X1, X2)) | → | active#(cons(mark(X1), X2)) |
mark#(take(X1, X2)) | → | mark#(X1) | | mark#(isNat(X)) | → | active#(isNat(X)) |
mark#(uTake2(X1, X2, X3, X4)) | → | active#(uTake2(mark(X1), X2, X3, X4)) | | mark#(tt) | → | active#(tt) |
mark#(uLength(X1, X2)) | → | active#(uLength(mark(X1), X2)) | | mark#(take(X1, X2)) | → | active#(take(mark(X1), mark(X2))) |
mark#(and(X1, X2)) | → | mark#(X2) | | active#(isNatList(take(N, IL))) | → | mark#(and(isNat(N), isNatIList(IL))) |
active#(isNat(length(L))) | → | mark#(isNatList(L)) | | active#(length(cons(N, L))) | → | mark#(uLength(and(isNat(N), isNatList(L)), L)) |
active#(isNatList(nil)) | → | mark#(tt) | | mark#(nil) | → | active#(nil) |
mark#(uTake1(X)) | → | active#(uTake1(mark(X))) | | mark#(and(X1, X2)) | → | active#(and(mark(X1), mark(X2))) |
mark#(length(X)) | → | mark#(X) | | active#(take(s(M), cons(N, IL))) | → | mark#(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active#(isNatList(cons(N, L))) | → | mark#(and(isNat(N), isNatList(L))) | | active#(isNatIList(zeros)) | → | mark#(tt) |
mark#(s(X)) | → | mark#(X) | | mark#(zeros) | → | active#(zeros) |
mark#(uLength(X1, X2)) | → | mark#(X1) | | mark#(isNatIList(X)) | → | active#(isNatIList(X)) |
active#(isNatIList(cons(N, IL))) | → | mark#(and(isNat(N), isNatIList(IL))) | | mark#(0) | → | active#(0) |
mark#(s(X)) | → | active#(s(mark(X))) | | active#(and(tt, T)) | → | mark#(T) |
active#(isNat(0)) | → | mark#(tt) | | mark#(cons(X1, X2)) | → | mark#(X1) |
active#(uTake1(tt)) | → | mark#(nil) | | mark#(uTake2(X1, X2, X3, X4)) | → | mark#(X1) |
active#(isNatIList(IL)) | → | mark#(isNatList(IL)) | | active#(uLength(tt, L)) | → | mark#(s(length(L))) |
active#(uTake2(tt, M, N, IL)) | → | mark#(cons(N, take(M, IL))) | | mark#(uTake1(X)) | → | mark#(X) |
mark#(and(X1, X2)) | → | mark#(X1) | | mark#(take(X1, X2)) | → | mark#(X2) |
active#(zeros) | → | mark#(cons(0, zeros)) | | active#(take(0, IL)) | → | mark#(uTake1(isNatIList(IL))) |
mark#(length(X)) | → | active#(length(mark(X))) | | mark#(isNatList(X)) | → | active#(isNatList(X)) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Open Dependency Pair Problem 14
Dependency Pairs
and#(X1, active(X2)) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Open Dependency Pair Problem 15
Dependency Pairs
uLength#(X1, mark(X2)) | → | uLength#(X1, X2) | | uLength#(X1, active(X2)) | → | uLength#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
active#(isNat(s(N))) | → | mark#(isNat(N)) | | active#(take(s(M), cons(N, IL))) | → | and#(isNat(M), and(isNat(N), isNatIList(IL))) |
uTake1#(mark(X)) | → | uTake1#(X) | | mark#(take(X1, X2)) | → | active#(take(mark(X1), mark(X2))) |
active#(uTake2(tt, M, N, IL)) | → | cons#(N, take(M, IL)) | | active#(isNatList(take(N, IL))) | → | mark#(and(isNat(N), isNatIList(IL))) |
active#(length(cons(N, L))) | → | mark#(uLength(and(isNat(N), isNatList(L)), L)) | | uTake2#(mark(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) | | isNat#(active(X)) | → | isNat#(X) |
mark#(s(X)) | → | mark#(X) | | uLength#(X1, mark(X2)) | → | uLength#(X1, X2) |
uTake2#(active(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) | | mark#(uTake2(X1, X2, X3, X4)) | → | uTake2#(mark(X1), X2, X3, X4) |
length#(mark(X)) | → | length#(X) | | uLength#(active(X1), X2) | → | uLength#(X1, X2) |
active#(and(tt, T)) | → | mark#(T) | | active#(length(cons(N, L))) | → | and#(isNat(N), isNatList(L)) |
mark#(cons(X1, X2)) | → | mark#(X1) | | active#(uLength(tt, L)) | → | mark#(s(length(L))) |
and#(mark(X1), X2) | → | and#(X1, X2) | | active#(uTake2(tt, M, N, IL)) | → | mark#(cons(N, take(M, IL))) |
mark#(and(X1, X2)) | → | mark#(X1) | | active#(take(s(M), cons(N, IL))) | → | isNat#(M) |
uTake2#(X1, active(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) | | active#(isNatIList(cons(N, IL))) | → | and#(isNat(N), isNatIList(IL)) |
active#(take(s(M), cons(N, IL))) | → | uTake2#(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL) | | mark#(uTake1(X)) | → | uTake1#(mark(X)) |
cons#(mark(X1), X2) | → | cons#(X1, X2) | | mark#(tt) | → | active#(tt) |
active#(take(s(M), cons(N, IL))) | → | isNat#(N) | | active#(isNat(length(L))) | → | mark#(isNatList(L)) |
mark#(uTake1(X)) | → | active#(uTake1(mark(X))) | | active#(isNatList(take(N, IL))) | → | isNatIList#(IL) |
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) | | mark#(length(X)) | → | mark#(X) |
active#(isNatIList(IL)) | → | isNatList#(IL) | | active#(take(s(M), cons(N, IL))) | → | mark#(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
cons#(X1, mark(X2)) | → | cons#(X1, X2) | | mark#(zeros) | → | active#(zeros) |
active#(uTake2(tt, M, N, IL)) | → | take#(M, IL) | | mark#(0) | → | active#(0) |
mark#(s(X)) | → | active#(s(mark(X))) | | uLength#(mark(X1), X2) | → | uLength#(X1, X2) |
active#(uTake1(tt)) | → | mark#(nil) | | mark#(uTake2(X1, X2, X3, X4)) | → | mark#(X1) |
cons#(active(X1), X2) | → | cons#(X1, X2) | | active#(isNatList(cons(N, L))) | → | isNat#(N) |
mark#(isNatList(X)) | → | isNatList#(X) | | isNatList#(mark(X)) | → | isNatList#(X) |
active#(zeros) | → | cons#(0, zeros) | | uTake2#(X1, mark(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) |
mark#(cons(X1, X2)) | → | active#(cons(mark(X1), X2)) | | mark#(take(X1, X2)) | → | mark#(X1) |
active#(take(s(M), cons(N, IL))) | → | isNatIList#(IL) | | mark#(uLength(X1, X2)) | → | active#(uLength(mark(X1), X2)) |
mark#(and(X1, X2)) | → | mark#(X2) | | mark#(s(X)) | → | s#(mark(X)) |
length#(active(X)) | → | length#(X) | | mark#(uLength(X1, X2)) | → | uLength#(mark(X1), X2) |
active#(isNat(s(N))) | → | isNat#(N) | | active#(isNatIList(cons(N, IL))) | → | isNat#(N) |
mark#(uLength(X1, X2)) | → | mark#(X1) | | mark#(isNatIList(X)) | → | active#(isNatIList(X)) |
active#(isNatIList(cons(N, IL))) | → | mark#(and(isNat(N), isNatIList(IL))) | | isNatList#(active(X)) | → | isNatList#(X) |
active#(length(cons(N, L))) | → | uLength#(and(isNat(N), isNatList(L)), L) | | active#(isNatIList(cons(N, IL))) | → | isNatIList#(IL) |
active#(isNat(0)) | → | mark#(tt) | | isNatIList#(active(X)) | → | isNatIList#(X) |
active#(uLength(tt, L)) | → | length#(L) | | take#(X1, mark(X2)) | → | take#(X1, X2) |
mark#(isNatIList(X)) | → | isNatIList#(X) | | isNatIList#(mark(X)) | → | isNatIList#(X) |
mark#(uTake1(X)) | → | mark#(X) | | uTake1#(active(X)) | → | uTake1#(X) |
cons#(X1, active(X2)) | → | cons#(X1, X2) | | active#(isNatList(take(N, IL))) | → | isNat#(N) |
active#(isNatList(cons(N, L))) | → | and#(isNat(N), isNatList(L)) | | active#(isNatList(cons(N, L))) | → | isNatList#(L) |
active#(take(0, IL)) | → | mark#(uTake1(isNatIList(IL))) | | and#(active(X1), X2) | → | and#(X1, X2) |
take#(mark(X1), X2) | → | take#(X1, X2) | | mark#(isNat(X)) | → | active#(isNat(X)) |
and#(X1, active(X2)) | → | and#(X1, X2) | | mark#(uTake2(X1, X2, X3, X4)) | → | active#(uTake2(mark(X1), X2, X3, X4)) |
active#(isNat(length(L))) | → | isNatList#(L) | | mark#(isNat(X)) | → | isNat#(X) |
isNat#(mark(X)) | → | isNat#(X) | | active#(length(cons(N, L))) | → | isNatList#(L) |
active#(isNatList(nil)) | → | mark#(tt) | | uLength#(X1, active(X2)) | → | uLength#(X1, X2) |
active#(take(s(M), cons(N, IL))) | → | and#(isNat(N), isNatIList(IL)) | | mark#(nil) | → | active#(nil) |
mark#(and(X1, X2)) | → | active#(and(mark(X1), mark(X2))) | | take#(X1, active(X2)) | → | take#(X1, X2) |
active#(length(cons(N, L))) | → | isNat#(N) | | active#(isNatList(cons(N, L))) | → | mark#(and(isNat(N), isNatList(L))) |
active#(isNatIList(zeros)) | → | mark#(tt) | | mark#(cons(X1, X2)) | → | cons#(mark(X1), X2) |
active#(take(0, IL)) | → | uTake1#(isNatIList(IL)) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
mark#(length(X)) | → | length#(mark(X)) | | active#(isNatList(take(N, IL))) | → | and#(isNat(N), isNatIList(IL)) |
active#(isNatIList(IL)) | → | mark#(isNatList(IL)) | | uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
mark#(take(X1, X2)) | → | take#(mark(X1), mark(X2)) | | s#(mark(X)) | → | s#(X) |
uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) | | active#(uLength(tt, L)) | → | s#(length(L)) |
mark#(and(X1, X2)) | → | and#(mark(X1), mark(X2)) | | mark#(take(X1, X2)) | → | mark#(X2) |
active#(zeros) | → | mark#(cons(0, zeros)) | | s#(active(X)) | → | s#(X) |
mark#(length(X)) | → | active#(length(mark(X))) | | mark#(isNatList(X)) | → | active#(isNatList(X)) |
active#(take(0, IL)) | → | isNatIList#(IL) | | take#(active(X1), X2) | → | take#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
The following SCCs where found
uTake2#(mark(X1), X2, X3, X4) → uTake2#(X1, X2, X3, X4) | uTake2#(X1, mark(X2), X3, X4) → uTake2#(X1, X2, X3, X4) |
uTake2#(active(X1), X2, X3, X4) → uTake2#(X1, X2, X3, X4) | uTake2#(X1, X2, X3, active(X4)) → uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, active(X3), X4) → uTake2#(X1, X2, X3, X4) | uTake2#(X1, active(X2), X3, X4) → uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, X3, mark(X4)) → uTake2#(X1, X2, X3, X4) | uTake2#(X1, X2, mark(X3), X4) → uTake2#(X1, X2, X3, X4) |
length#(mark(X)) → length#(X) | length#(active(X)) → length#(X) |
isNatIList#(active(X)) → isNatIList#(X) | isNatIList#(mark(X)) → isNatIList#(X) |
uLength#(X1, mark(X2)) → uLength#(X1, X2) | uLength#(X1, active(X2)) → uLength#(X1, X2) |
uLength#(mark(X1), X2) → uLength#(X1, X2) | uLength#(active(X1), X2) → uLength#(X1, X2) |
mark#(cons(X1, X2)) → active#(cons(mark(X1), X2)) | active#(isNat(s(N))) → mark#(isNat(N)) |
mark#(isNat(X)) → active#(isNat(X)) | mark#(take(X1, X2)) → mark#(X1) |
mark#(tt) → active#(tt) | mark#(uTake2(X1, X2, X3, X4)) → active#(uTake2(mark(X1), X2, X3, X4)) |
mark#(uLength(X1, X2)) → active#(uLength(mark(X1), X2)) | mark#(take(X1, X2)) → active#(take(mark(X1), mark(X2))) |
mark#(and(X1, X2)) → mark#(X2) | active#(isNatList(take(N, IL))) → mark#(and(isNat(N), isNatIList(IL))) |
active#(isNat(length(L))) → mark#(isNatList(L)) | active#(isNatList(nil)) → mark#(tt) |
active#(length(cons(N, L))) → mark#(uLength(and(isNat(N), isNatList(L)), L)) | mark#(uTake1(X)) → active#(uTake1(mark(X))) |
mark#(nil) → active#(nil) | mark#(and(X1, X2)) → active#(and(mark(X1), mark(X2))) |
active#(isNatList(cons(N, L))) → mark#(and(isNat(N), isNatList(L))) | active#(take(s(M), cons(N, IL))) → mark#(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
mark#(length(X)) → mark#(X) | mark#(s(X)) → mark#(X) |
active#(isNatIList(zeros)) → mark#(tt) | mark#(uLength(X1, X2)) → mark#(X1) |
mark#(zeros) → active#(zeros) | mark#(isNatIList(X)) → active#(isNatIList(X)) |
active#(isNatIList(cons(N, IL))) → mark#(and(isNat(N), isNatIList(IL))) | mark#(0) → active#(0) |
mark#(s(X)) → active#(s(mark(X))) | active#(and(tt, T)) → mark#(T) |
active#(isNat(0)) → mark#(tt) | active#(uTake1(tt)) → mark#(nil) |
mark#(cons(X1, X2)) → mark#(X1) | active#(isNatIList(IL)) → mark#(isNatList(IL)) |
mark#(uTake2(X1, X2, X3, X4)) → mark#(X1) | active#(uLength(tt, L)) → mark#(s(length(L))) |
active#(uTake2(tt, M, N, IL)) → mark#(cons(N, take(M, IL))) | mark#(uTake1(X)) → mark#(X) |
mark#(and(X1, X2)) → mark#(X1) | mark#(take(X1, X2)) → mark#(X2) |
active#(zeros) → mark#(cons(0, zeros)) | mark#(isNatList(X)) → active#(isNatList(X)) |
mark#(length(X)) → active#(length(mark(X))) | active#(take(0, IL)) → mark#(uTake1(isNatIList(IL))) |
isNatList#(mark(X)) → isNatList#(X) | isNatList#(active(X)) → isNatList#(X) |
uTake1#(active(X)) → uTake1#(X) | uTake1#(mark(X)) → uTake1#(X) |
s#(mark(X)) → s#(X) | s#(active(X)) → s#(X) |
cons#(X1, active(X2)) → cons#(X1, X2) | cons#(mark(X1), X2) → cons#(X1, X2) |
cons#(X1, mark(X2)) → cons#(X1, X2) | cons#(active(X1), X2) → cons#(X1, X2) |
and#(active(X1), X2) → and#(X1, X2) | and#(X1, active(X2)) → and#(X1, X2) |
and#(mark(X1), X2) → and#(X1, X2) | and#(X1, mark(X2)) → and#(X1, X2) |
isNat#(active(X)) → isNat#(X) | isNat#(mark(X)) → isNat#(X) |
take#(mark(X1), X2) → take#(X1, X2) | take#(X1, active(X2)) → take#(X1, X2) |
take#(X1, mark(X2)) → take#(X1, X2) | take#(active(X1), X2) → take#(X1, X2) |
Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
and#(active(X1), X2) | → | and#(X1, X2) | | and#(X1, active(X2)) | → | and#(X1, X2) |
and#(mark(X1), X2) | → | and#(X1, X2) | | and#(X1, mark(X2)) | → | and#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
and#(active(X1), X2) | → | and#(X1, X2) | | and#(mark(X1), X2) | → | and#(X1, X2) |
Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
uLength#(X1, mark(X2)) | → | uLength#(X1, X2) | | uLength#(X1, active(X2)) | → | uLength#(X1, X2) |
uLength#(mark(X1), X2) | → | uLength#(X1, X2) | | uLength#(active(X1), X2) | → | uLength#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
uLength#(mark(X1), X2) | → | uLength#(X1, X2) | | uLength#(active(X1), X2) | → | uLength#(X1, X2) |
Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
uTake1#(active(X)) | → | uTake1#(X) | | uTake1#(mark(X)) | → | uTake1#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
uTake1#(active(X)) | → | uTake1#(X) | | uTake1#(mark(X)) | → | uTake1#(X) |
Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNatList#(mark(X)) | → | isNatList#(X) | | isNatList#(active(X)) | → | isNatList#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNatList#(mark(X)) | → | isNatList#(X) | | isNatList#(active(X)) | → | isNatList#(X) |
Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNatIList#(active(X)) | → | isNatIList#(X) | | isNatIList#(mark(X)) | → | isNatIList#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNatIList#(active(X)) | → | isNatIList#(X) | | isNatIList#(mark(X)) | → | isNatIList#(X) |
Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
take#(mark(X1), X2) | → | take#(X1, X2) | | take#(X1, active(X2)) | → | take#(X1, X2) |
take#(X1, mark(X2)) | → | take#(X1, X2) | | take#(active(X1), X2) | → | take#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
take#(mark(X1), X2) | → | take#(X1, X2) | | take#(active(X1), X2) | → | take#(X1, X2) |
Problem 16: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
take#(X1, active(X2)) | → | take#(X1, X2) | | take#(X1, mark(X2)) | → | take#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 2x + 1
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): 2x + 1
- nil: 0
- s(x): 0
- take(x,y): 0
- take#(x,y): y + 1
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
take#(X1, active(X2)) | → | take#(X1, X2) | | take#(X1, mark(X2)) | → | take#(X1, X2) |
Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
cons#(X1, active(X2)) | → | cons#(X1, X2) | | cons#(mark(X1), X2) | → | cons#(X1, X2) |
cons#(X1, mark(X2)) | → | cons#(X1, X2) | | cons#(active(X1), X2) | → | cons#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
cons#(mark(X1), X2) | → | cons#(X1, X2) | | cons#(active(X1), X2) | → | cons#(X1, X2) |
Problem 17: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
cons#(X1, active(X2)) | → | cons#(X1, X2) | | cons#(X1, mark(X2)) | → | cons#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 2x + 1
- and(x,y): 0
- cons(x,y): 0
- cons#(x,y): y + 1
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): x
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
cons#(X1, active(X2)) | → | cons#(X1, X2) |
Problem 19: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
cons#(X1, mark(X2)) | → | cons#(X1, X2) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 0
- and(x,y): 0
- cons(x,y): 0
- cons#(x,y): y + x + 1
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): x + 2
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
cons#(X1, mark(X2)) | → | cons#(X1, X2) |
Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
length#(mark(X)) | → | length#(X) | | length#(active(X)) | → | length#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
length#(mark(X)) | → | length#(X) | | length#(active(X)) | → | length#(X) |
Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
isNat#(active(X)) | → | isNat#(X) | | isNat#(mark(X)) | → | isNat#(X) |
Problem 12: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
uTake2#(mark(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, mark(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(active(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, active(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
uTake2#(mark(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(active(X1), X2, X3, X4) | → | uTake2#(X1, X2, X3, X4) |
Problem 18: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, mark(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, active(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- active(x): x + 1
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): 2x
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x2 + 2x1 + 1
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, active(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) |
Problem 20: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, mark(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 0
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): 2x + 1
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x2
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, mark(X2), X3, X4) | → | uTake2#(X1, X2, X3, X4) |
Problem 21: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 2x
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): x + 3
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x4 + x1
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, X2, X3, mark(X4)) | → | uTake2#(X1, X2, X3, X4) |
Problem 22: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 2x + 1
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): 3x + 1
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x4 + x1
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, X2, X3, active(X4)) | → | uTake2#(X1, X2, X3, X4) |
Problem 23: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) | | uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- active(x): x
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): x + 2
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x3 + x1
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, X2, mark(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Problem 24: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Polynomial Interpretation
- 0: 0
- active(x): 2x + 1
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): 0
- nil: 0
- s(x): 0
- take(x,y): 0
- tt: 0
- uLength(x,y): 0
- uTake1(x): 0
- uTake2(x1,x2,x3,x4): 0
- uTake2#(x1,x2,x3,x4): x4 + 2x3 + x2 + x1
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
uTake2#(X1, X2, active(X3), X4) | → | uTake2#(X1, X2, X3, X4) |
Problem 13: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |
Rewrite Rules
active(and(tt, T)) | → | mark(T) | | active(isNatIList(IL)) | → | mark(isNatList(IL)) |
active(isNat(0)) | → | mark(tt) | | active(isNat(s(N))) | → | mark(isNat(N)) |
active(isNat(length(L))) | → | mark(isNatList(L)) | | active(isNatIList(zeros)) | → | mark(tt) |
active(isNatIList(cons(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) | | active(isNatList(nil)) | → | mark(tt) |
active(isNatList(cons(N, L))) | → | mark(and(isNat(N), isNatList(L))) | | active(isNatList(take(N, IL))) | → | mark(and(isNat(N), isNatIList(IL))) |
active(zeros) | → | mark(cons(0, zeros)) | | active(take(0, IL)) | → | mark(uTake1(isNatIList(IL))) |
active(uTake1(tt)) | → | mark(nil) | | active(take(s(M), cons(N, IL))) | → | mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)) |
active(uTake2(tt, M, N, IL)) | → | mark(cons(N, take(M, IL))) | | active(length(cons(N, L))) | → | mark(uLength(and(isNat(N), isNatList(L)), L)) |
active(uLength(tt, L)) | → | mark(s(length(L))) | | mark(and(X1, X2)) | → | active(and(mark(X1), mark(X2))) |
mark(tt) | → | active(tt) | | mark(isNatIList(X)) | → | active(isNatIList(X)) |
mark(isNatList(X)) | → | active(isNatList(X)) | | mark(isNat(X)) | → | active(isNat(X)) |
mark(0) | → | active(0) | | mark(s(X)) | → | active(s(mark(X))) |
mark(length(X)) | → | active(length(mark(X))) | | mark(zeros) | → | active(zeros) |
mark(cons(X1, X2)) | → | active(cons(mark(X1), X2)) | | mark(nil) | → | active(nil) |
mark(take(X1, X2)) | → | active(take(mark(X1), mark(X2))) | | mark(uTake1(X)) | → | active(uTake1(mark(X))) |
mark(uTake2(X1, X2, X3, X4)) | → | active(uTake2(mark(X1), X2, X3, X4)) | | mark(uLength(X1, X2)) | → | active(uLength(mark(X1), X2)) |
and(mark(X1), X2) | → | and(X1, X2) | | and(X1, mark(X2)) | → | and(X1, X2) |
and(active(X1), X2) | → | and(X1, X2) | | and(X1, active(X2)) | → | and(X1, X2) |
isNatIList(mark(X)) | → | isNatIList(X) | | isNatIList(active(X)) | → | isNatIList(X) |
isNatList(mark(X)) | → | isNatList(X) | | isNatList(active(X)) | → | isNatList(X) |
isNat(mark(X)) | → | isNat(X) | | isNat(active(X)) | → | isNat(X) |
s(mark(X)) | → | s(X) | | s(active(X)) | → | s(X) |
length(mark(X)) | → | length(X) | | length(active(X)) | → | length(X) |
cons(mark(X1), X2) | → | cons(X1, X2) | | cons(X1, mark(X2)) | → | cons(X1, X2) |
cons(active(X1), X2) | → | cons(X1, X2) | | cons(X1, active(X2)) | → | cons(X1, X2) |
take(mark(X1), X2) | → | take(X1, X2) | | take(X1, mark(X2)) | → | take(X1, X2) |
take(active(X1), X2) | → | take(X1, X2) | | take(X1, active(X2)) | → | take(X1, X2) |
uTake1(mark(X)) | → | uTake1(X) | | uTake1(active(X)) | → | uTake1(X) |
uTake2(mark(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, mark(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, mark(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, mark(X4)) | → | uTake2(X1, X2, X3, X4) |
uTake2(active(X1), X2, X3, X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, active(X2), X3, X4) | → | uTake2(X1, X2, X3, X4) |
uTake2(X1, X2, active(X3), X4) | → | uTake2(X1, X2, X3, X4) | | uTake2(X1, X2, X3, active(X4)) | → | uTake2(X1, X2, X3, X4) |
uLength(mark(X1), X2) | → | uLength(X1, X2) | | uLength(X1, mark(X2)) | → | uLength(X1, X2) |
uLength(active(X1), X2) | → | uLength(X1, X2) | | uLength(X1, active(X2)) | → | uLength(X1, X2) |
Original Signature
Termination of terms over the following signature is verified: isNatIList, uLength, mark, and, uTake1, isNat, uTake2, 0, isNatList, s, tt, zeros, take, length, active, nil, cons
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed:
s#(mark(X)) | → | s#(X) | | s#(active(X)) | → | s#(X) |